

Koneru Lakshmaiah Education Foundation (Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' Grade University & Approved by AICTE & ISO 9001-2015 Certified Campus: Green Fields, Vaddeswaram - 522 502, Guntur District, Andhra Pradesh, INDIA. Phone No. 0863 - 2399999; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 -2577715, Fax: +91-866-2577717.

Department of Physics

A.Y.2020-21

Course	Course Title	S. No	CO.	Description of the course Outcome
Code			No	
		1	CO1	Apply and classify the analytical functions, complex integration and evaluation of definite integrals
20 PH 5101	MATHEMATICAL	2	CO2	Analyze Beta and Gamma functions and some special functions
	PHYSICS	3	CO3	Apply the transform technique to describe mathematical functions
		4	CO4	Apply the numerical technique to solve functions and system of equations
		5	CO1	Apply Newtonian mechanics to solve mechanics of particle and solving Lagrange's equations of motion from D'Alembert principle
		6	CO2	Apply the principles of classical mechanics to reduce the two body problem to One body problem and Classification of orbits
20 PH 5102	CLASSICAL MECHANICS	7	CO3	Apply Hamilton's equations to solve Canonical transformations and Illustrate the Poisson brackets, Invariance of Poisson bracket under canonical transformations-Principle of Ieast action
		8	CO4	Apply the Hamilton Jacobi equations to solve various characteristic functions, Action and angle variables, small oscillations and their applications
20 PH 5103	ELECTRO DYNAMICS	9	CO1	Understand the concepts of Laplace and Poisson's equations, Static fields in material media, Polarization vector, macroscopic equations, classification of dielectric media, Molecular polarizability and electrical susceptibility, Clausius - Mossetti relation.
		10	CO2	Apply and discuss on the differential equations of magneto statics, vector potential, magnetic fields of a localized current distribution, Singularity in

				dipole field, Fermi-contact term, Force and torque
				on a localized current distribution.
		11	CO3	Apply the electric and magentostatics to describe
				the Formal solution of electrostatic boundary value
				problem with Green function, Method of images
				with examples, Magneto static boundary value
				problems. Wave guide and its types, Introduction
				of TE, TM modes and their boundary values
		12	CO4	Apply the principles of Faraday's law of induction
				to discuss the mechanisms of displacement current,
				Maxwell equations, scalar and vector potential,
				Gauge transformation, Lorentz and Coulomb
				gauges, conservation of energy, Poynting Theorem,
				Conservation of momentum.
		13	CO1	Understand the working of Different
				Semiconductor devices (Construction, Working
				Principles and V-l characteristics) and their
	ANALOG			applications.
20 PH 5104	ELECTRONICS	14	CO2	Understand the working of Different Negative
				feedback amplifiers
		15	CO3	Apply the basic operational amplifier
				characteristics, OPAMP parameters, applications
				as inverter, integrator, differentiator etc
		16	CO4	Design the basic applications of LP, HP, BP, BS
				filters etc.
		17	CO1	Apply the concepts of C language and Python and
				be able to create simple programs using the C
				language and Python operators.
		18	CO2	Apply the concepts of MATLAB and be able to
				develop simple programs to solve some application
20 DU 5105				problems.
20 PH 5105	COMPUTATIONAL	19	CO3	Understand the equations and simultaneous
	PHYSICS			equations with algorithms and apply it in real time
		-	GOA	problems that arise in Computational Physics.
		20	C04	Apply the notations of interpolations numerical
				differentiation and integration with algorithms to
20 DU 5107		21		solve problems involving numerical techniques.
20 PH 5106	ANALOG	21		Analyze the semiconductor and operational circuits
20 DH 5107		22	CO1	Apply C language and Dythen experience and
2011310/				functions for symbolic processing and colving
	I II I SICS LAD			simple programs
		23	CO^2	Apply MATLAB operators and functions for
		1 45	1002	Typiy mailab operators alle fulletions for

				symbolic processing and solving equations, Eigen values and Eigen vectors, curve fitting and
				interpolation
		24	CO3	Apply MATLAB tools and codes for solving a linear system and Gauss elimination method.
		25	CO4	Apply MATLAB tools and codes for solving linear interpolation, polynomial curve fitting, and least square curve fitting and general nonlinear fits.
		26	CO1	Understand the Microstates and macro states of Ideal gas and Microstate and microstate in classical systems, and derivation of Maxwell's relations. and thermodynamic laws.
20 PH 5201	S TATISTICAL	27	CO2	Applications of these ensembles to classical ideal gas and explaining about types of oscillators.
	MECHANICS	28	CO3	Apply the postulates of Quantum Statistical Mechanics and types of ensembles and energy distributions
		29	CO4	Apply the Thermodynamic behavior of Ideal, Bose, Fermi gases and applications of statistical mechanics
	QUANTUM MECHANICS-I	30	CO1	Apply the basic concepts of Quantum Mechanics and solve the related problems
20 PH 5202		31	CO2	Apply the Vector Space methods in core problems of physics.
		32	CO3	Apply the Schrodinger's Wave equation to exactly solvable problems.
		33	CO4	Apply the Schrodinger's Wave equation to many body problems and arrive the solution.
	FIBER OPTICS AND NONLINEAR OPTICS	34	CO1	Understand the fundamentals of optical fibers and their characteristics with applications.
20 PH 5203		35	CO2	Apply the concepts of optical fibers to explain the types of fibers, error schemes and transverse electric and magnetic fields in fibers
		36	CO3	Understand the concepts of nonlinear phenomena of light and in formation about interferometers and sensors
		37	CO4	Apply the nonlinear optics to describe the applications of frequency modulation of light and relevant theories.
		38	CO1	Apply the structure of crystalline solids, application to crystal structure-properties and its relationship, crystal diffraction and the experimental concepts of reciprocal lattice

20 PH 5204	SOLID STATE	39	CO2	Apply and explain the origin of chemical bonds in
	PHYSICS- I			ionic and Vander wall bonds; motion of electron in
				gas and metal and heat capacity of metal
		40	CO3	Illustrate the Periodic Zone schemes, Fermi
				surfaces and different types of orbits and
				quantization of orbits in a magnetic field
		41	CO4	Apply and demonstrate the concept of energy
				bands and effect of the electric field on Materials.
		42	CO1	Understand number systems and basic connects of
				digital electronics and techniques for minimization
20 DU 5205	DICITAL	12	GOO	of gates.
20 PH 5205	DIGITAL	43	CO2	Design of combinational logic circuits.
	ELECTRONICS	44	CO3	Design of sequential logic circuits.
		45	CO4	FPGA and CPLD
		46	CO1	Apply the knowledge of physics principles and
				performing experiments and preparation of new
				glass materials and study their spectroscopic
20 PH 5206	SSP-I LAB		~~~	properties
		47	CO2	Apply the knowledge of physics principles and
				performing experiments and preparation of new
				glass materials and study their spectroscopic
		19	<u> </u>	Apply the knowledge of physics principles and
		40		performing experiments and preparation of new
				glass materials and study their spectroscopic
				properties
		49	CO4	Apply the knowledge of physics principles and
				performing experiments and preparation of new
				glass materials and study their spectroscopic
				properties
		50	CO1	Apply the knowledge of Digital electronics for
	DIGITAI	51	CO^2	Apply the knowledge of Digital electronics for
20 PH 5207	FLECTRONICS	51		devices
201110207	LAB	52	CO3	Apply the knowledge of Digital electronics for
		52		devices
		53	CO4	Apply the knowledge of Digital electronics for
				devices
		54	CO1	Apply Perturbation theory in different areas of
				physics
	QUANTUM	55	CO2	Apply Approximation methods in Perturbation
20 PH 5301	MECHANTCS-II			theory and apply in many branches of physics.

		56	CO3	Apply the Operators algebra in various physical
				phenomenon.
		57	CO4	Apply the Relativistic Quantum Mechanics and
				extend the application in to other areas of Physics.
		58	CO1	Understand the electronic structure in atoms using
				different spectra
	ATOMIC AND	59	CO2	Explain molecular energy levels using rotational
20 PH 5302	MOLECULAR			and vibrational spectroscopy
	SPECTROSCOPY	60	CO3	Illustrate Raman effect of rotational, vibrational
				and polyatomic molecules
		61	CO4	Apply the knowledge of principles to study
				electronic spectra and resonance spectroscopy like
				NMR and ESR.
		62	CO1	Understand the deuteron and Magnetic dipole
				moment and nuclear forces and scattering cross
				section High energy nucleon-nucleon and nuclear
				forces.
		63	CO2	Applications the knowledge of Nuclear Models,
20 PH 5303	NUCLEAR			gas and liquid and explaining about types of beta,
	PHYSICS			alpha particle, optical model.
		64	CO3	Apply of Radioactive Decays (Alpha, Beta,
				Gamma radiations) and types of radioactive decay
				and radioactive transformation in alpha decay.
		65	CO4	Apply of Nuclear Reaction, Fission and Fusion
				behavior of Energetic of nuclear reactions and
				Characteristics of fissions and fusion reactors.
		66	CO1	Understand the Kinematics of Nuclear -
				Elementary Particle Reactions - Scattering and
				Form Factors - Broad classification of elementary
20 PH 5304	PARTICLE			particles - particle interactions in nature of
	PHYSICS			conservation Iaws
		67	CO2	Understand the concept of Elementary Particles,
				ideas, CPT invariance, particle reaction and quarks.
		68	CO3	Apply the knowledge of Electroweak interaction,
				Quark hypothesis, Quark model, cyclotron and
				LHC accelerators
		69	CO4	Application of existing knowledge in Mossbauer
				Spectroscopy, radioactive, and conservation laws
		70	CO1	Understand semiconductor physics: direct and
				indirect band-gaps, the effects of doping a
				semiconductor
		71	CO2	Applying the knowledge of basic concepts of
				superconductivity to explain the AC and DC

				Josephson effect, some attempts to explain
20 PH 5305	SOLID STATE			superconductivity. the BCS model etc.
	PHYSICS-II	72	CO3	Understand the source of a materials, magnetic
				behavior and be able to distinguish types of
				magnetism
		73	CO4	Applying the knowledge of polarization to know
				the properties of piezo and ferro electric materials
		74	CO1	Understand the mechanisms of energy distribution
				and principles involved in designing laser systems.
		75	CO2	Apply the basic principles and mechanisms of laser
				systems and demonstrate the types of lasers with its
20 PH 5306	LASERS AND			applications.
	PHOTONICS	76	CO3	Understand the linear and nonlinear concepts of
				light and its propagation in different optical media
		77	CO4	Apply the nonlinear phenomena of light to explain
				the scattering theory and advanced optical
				properties of materials.
20 PH 5307	TERM PAPER	78	1	Collecting literature from any interested topic
				related to dissertation of IV semester
		79	COI	Apply physics principles to understand the
				mechanical and magnetic properties of materials.
	SOLID STATE	80	CO2	Apply thermodynamic principles to understand the
20 PH 5308		0.1	602	Physics experiments.
	PHYSICS LAB-II	81	03	Apply the knowledge of optical and dielectric
		02		experiments by applying physics principles
		82	04	Analyze the properties of nano materials which
		02	<u>CO1</u>	Analy the EM rediction and row coefficiency
		0.5		Apply the EM radiation and ray scattering
				XPowder X-r av diffractometer
	FXPEMMENTAI	84	CO^2	Apply the techniques to discuss on the applications
20 PH 54E1	TECHNIQUES	04		of SFM_TFM_FDAX and WDS_FSCA and PFS
201112121		85	CO3	Apply of Rutherford back scattering method
				Magnetic Characterization: M-H
		86	CO4	Analyze the data of DTA. TGA, and DSC with
				suitable glass and ceramic materials
		87	CO1	Understand the relevant information on the
				generation of amplitude modulation waves
	BASIC	88	CO2	Apply the concepts of frequency and phase
20 PH 54E2	COMMUNICATION THEORY			modulation in AM waves
		89	CO3	Understand and provide the effective information
				on random variables and characterization
				techniques used for filtering the noise in AM

				waves
		90	CO4	Apply the methods and codes used in transfer of
				information theory to describe the communication
				theory
		91	CO1	Understand the basics of nanomaterials, parameters
				which get effected by scaling down the size of the
				material, Major approaches, and synthesis
				procedure
		92	CO2	Apply and explain the basics of principles
20 PH 54E3	PHYSICS OF			associated with characterization techniques and
	NANOMATERILS			usage of the techniques
		93	CO3	Understand to identify the change in properties of
				the nanomaterial in case of metals, semiconductors,
				insulators, ceramics and polymers and make use of
				nanomaterials in those devices
		94	CO4	Apply the experimental techniques for synthesis of
		0.5		carbon nanotubes and explore their applications.
		95	COI	Understand the basics of Radar operations, types of
		0.6		radar and applications
	DADAD SVSTEMS	96	02	Apply the Radar principles and learn the signal and
20 DH 54E4	AND SATELLITE	07	CO2	data processing for radars, antenna characteristics
20 PH 34E4	AND SATELLITE	9/	03	Apply the principles and communications, orbital
				and Telemetry. Tracking
		08	CO4	Apply the mechanisms to explain the coding
		90	04	techniques for INMARSAT VSAT GPS
				RADARSAT INTELST applications
		99	CO1	Understand the basic concepts of thin film
				technology and the preparation and technology
		100	CO2	Apply the mechanisms and explain the growth and
20 PH 54E5	THIN FLIM	100		techniques and kinetics
	TECHNOLOGY	101	CO3	Understand the principles about XRD, TEM and
				other techniques for Thin film characterization
		102	CO4	Apply the mechanisms of different characterization
				techniques in the various properties of thin films.
		103	CO1	Understand the antenna characteristics, radiation
				and applications
		104	CO2	Understand the antenna arrays, advantages;
	ANTENA THEORY			impedance measurements
20 PH 54E6	AND RADIOWAVE	105	CO3	Apply the characteristics of antenna theory and
	PROPAGATION			describe the types of antennas. excitation
				techniques for designing the antennas
		106	CO4	Apply the mechanisms of antenna theory to explain

				the characteristics of ground wave, space wave and
				sky wave propagation for wireless
				communications.
		107	CO1	Understand the basics of design thinking and its
20 UC 1102	DESIGN THINKING AND INNOVATION-I			implications in product or service development
		108	CO2	Understand and requirements of Analyze the a
				typical problem
		109	CO3	Plan the necessary activities towards solving the
				problem through ideation and prototyping
		110	CO4	Evaluate the solution and refine them based on the
				customer feedback