

Koneru Lakshmalah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as A++ - ◆Approved by AICTE → ISO 21001-2018 Certified Campus: Green Fields, Vaddoswarom - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 = 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 - 3500122, 2576129

Department of Electrical and Electronics Engineering

Program: M. Tech - Power Systems

Academic Year: 2021-2022

Course Code	Course Title	CONO	Description of the Course Outcome
21EE5102	Advanced	CO1	Understand power system stability and power angle equations
	Power System	CO2	Analyzing swing equation and equal area criterion
	Analysis	CO3	Understand synchronous machine modeling
		CO4	Understand excitation systems and power system stabilizers
21EE5101	Power System Dynamics & Stability	CO1	Comprehend basic concepts and principles in power system analysis and Formulate and solve power flow problems, economic and environmental dispatch problems
		CO2	Demonstrate understanding in the theory of power sy stem security analysis, voltage stability analysis, optimal power flow and state estimation
		CO3	Develop algorithms as well as to use software tools to solve power system analysis and stability problems
		CO4	To make sound recommendations and implement as required based on these solutions, analyse for practical power system problems
21EF5103	Deregulated Operation Of Power Systems	CO1	Describe various types of regulations in power systems and Identify the need of regulation and deregulation
		CO2	Define and describe the Technical and Non-technical issues in Deregulated Power Industry
		CO3	Identify and give examples of existing electricity markets
		CO4	Classify different market mechanisms and to summarize the role of various entities in the market
21EE5114	Modern Control Theory	CO1	this course introduces Z Transforms and analysis of discrete data systems using Z Transforms
		CO2	in case of multiple input and multiple output systems, this course helps to deal with digital control systems
		CO3	the Non – Linear systems which will come across in most of practical systems, this course deals about Non – Linearity's
		C04	since stability is most important for everyu systems to give it satisfactory performance, this topic also helps
1EE51S3		CO1	Understand basic concepts of smart grid in power network

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ❖Approved by AICTE ❖ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-36, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129

	Floating Solar and Off -Shore wind Technologies	CO2	Analyzing swing equation and equal area criterion
		CO3	Understand synchronous machine modeling
		CO4	Understand excitation systems and power system stabilizer
21EE51\$2	Distribution System Planning & Automation	CO1	Apply numerical or iterative techniques in power systems for optimal power flow solutions
		CO2	Optimize the parameters in control systems for desired steady state or transient response
		CO3	Optimize the cost function in deciding economic factors of power systems
		CO4	Design of electrical systems optimally using suitable techniques like univariate method, steepest descent methodetc
	Real Time Control of Power System	CO1	Learn various activities of operator
21EE5201		CO2	Understand about Supervisory control and data acquisition
2155201		CO3	Real time software and state estimation
		CO4	Understand Security management
£		CO1	Differentiate between Algorithmic based methods and knowledge based methods
21EE5202	Al Techniques in Power Systems	CO2	Use the soft computing techniques for power system problems
		CO3	Use appropriate AI framework for solving power system problems
		CO4	Apply GA to power system optimization problems
	Smart Grids Technologies	CO1	Understand basic concepts of smart grid in power network.
21EE5214		CO2	Analyzing swing equation and equal area criterion
		CO3	Understand synchronous machine modeling
		CO4	Understand excitation systems and power system stabilizers
:1EE5203	Digital Protection of Power System	CO1	Understand salient features of protective relaying
		CO2 =	electromagnetic relays and distance protection schemes Apply the Over current protective schemes and differential protection of alternator and transformer
		CO3	Analyse wire pilot and carrier current protection for
		CO4	Understand the principle of operation of static relays and realization of various static relays and Understand current practices in microprocessor based numerical relays and the over voltage protection

Dr. JARUPULA SOMLA Department of EEE KLEF Deemed to be Universit Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502.

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ◆Approved by AICTE ❖ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram 522 302, Guntur District, Andhra Pradesti, INDIA Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-36, Museum Road, Governorpet, Vijayawada | 520 002, Ph; +91 + 806 - 3500122, 2576129

		CO1	Learners will be able to refresh on basics of power
			transmission networks and need for FACTS controllers
		CO2	Learners will be able to explain about static var compensato
21EE52C1	FACTS Devices		in detail and series compensation devices
		CO3	Learners will understand the significance about different
			voltage source converter based facts controllers
		CO4	Learners will be able to analyze on FACTS controller
			interaction and control coordination
		CO1	To understand the basic concepts of EHV AC and HVDC
			transmission
		CO2	To identify the electrical requirements for HVDC lines and
			identify the components used in AC to DC conversion
21EE52D2	Dower Ovelity	000	
21002	Power Quality	CO3	To understand the operation of HVDC conversion technology
		CO4	To understand the first-way to
		104	To understand the fundamental requirements of HVDC
			transmission line design and To identify factors affecting AC-
			DC transmission
		CO1	understand the color of the color
	Floating Solar and Off -Shore wind Technologies	1001	understand the selection of floating solar power plant
		CO2	understand different layouts and selection of converters
21EE51S3			and selection of converters
		CO3	understand the operation of off shore wind power plants
		CO4	Analyze the operation of floating solar and off shore power
	Digital Signal Processors and Applications		system
		CO1	Hadaman I
		COI	Understand components of digital signal processing
		CO2	Understand Architecture of TMS320C5X, TMS320C6X and
			ADSP-21XXprocessors
21EE51B2		CO3	Understand programming of functional units of TMS320C5X,
			TMS320C6X and ADSP-21XX
		CO4	Apply Signal conditioning and PWM applications with
			TMS320C5X, TMS320C6X and ADSP-21XX processors
21EE52C3	Adaptive Control Systems	CO1	Understand the elements of probability and Stochastic
			processes
		CO2	Understand parametric and non-parametric system models
		CO3	Understand adaptive control techniques to linear systems
			, sometiment to mich systems
		CO4	Apply adaptive control process and assess stability of linear
			systems
21EE52D2	Power Quality	CO1	Outline basic power quality issues
			· ·
			J. onle

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ◆Approved by AICTE ❖ ISO 21001,2018 Certified Campus: Green Fields, Vaddeswararn - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129

		CO2	Demonstrate conventional loop control for voltage and current balance
		CO3	Demonstrate DSTATCOM for power quality restoration
	f.	CO4	Apply combined compensation techniques for power quality restoration
21EE52D3	Energy Management Systems	CO1	Outline data acquisition components of power system
		CO2	Demonstrate energy data monitoring, reporting and communication
		CO3	Apply supervisory control for energy management
		CO4	Illustrate Energy management centre functions
21EE51S1	Reactive Power Compensation & Management	CO1	Distinguish the importance of load compensation in symmetrical as well as unsymmetrical loads
		CO2	Examine various compensation methods in transmission lines
		CO3	Construct model for reactive power coordination
		CO4	Distinguish demand side reactive power management & user side reactive power management
21EE52C2	ENERGY CONSERVATION & AUDIT	CO1	Understand the concept of Energy Audit and Energy Management
		CO2	Analyze the various characteristics of energy efficient motors
		CO3	Analyze the different energy instruments and importance of power factor improvement
		CO4	Analyze the economic aspects of electrical energy

Dr. JARUPULA SOMLAL Department of EEE
KLEF Deemed to be University Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502.