

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act. 1956) Accredited by NAAC as 'A++' *Approved by AICTE * ISO 21001:2018 Certified

Accredited by NAAC as 'A++'

Approved by AICTE

ISO 21001-2018 Certified Campus: Green Fields, Vaddeswararn - 522 302, Guntur District, Andhra Pradesh, INDIA, Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 1002, Pt. +91 - 865 - 3500122, 2578128

Department of Electrical and Electronics Engineering

Program: M. Tech - Power Systems

Academic Year: 2020-2021

Course	Course Title	CONO	Description of the Course Outcome
Code	100000000000000000000000000000000000000		
18EE5102		CO1	Understand the modeling aspects of power system
			components and form the network matrices
	Advanced Power System	CO2	Apply mathematical methods for the solution of Power flov
			problem
		CO3	Analyze of power system with symmetrical and
	Analysis		unsymmetrical faults
		CO4	Analyze the operation of power system under different
			contingencies
		CO5	Test the Power system problems using computer
		004	programming
	Power System	CO1	Analyze Synchronous Machine modeling
18EE5101	Dynamics & Stability	CO2	Analyzing power system stability
		CO3	Analyze Small signal stability
		CO4	Analyze Excitation systems and Voltage Stability
	Deregulated Operation Of Power Systems	CO1	Understand the market operations in the electricity market
			under deregulated environment, Open Access Same-time
*			Information System (OASIS) and Available Transfer
			Capability (ATC).
18EE5103		CO2	Analyze the concepts of Electricity Pricing.
		CO3	Analyze the Power System Operation in Competitive
			Environment and Market Power.
		CO4	Analyze the concepts of Transmission Pricing and
			Congestion pricing.
	Modern Control Theory	CO1	Understand the basics of Z-Transforms and Digital control
18EE5104			systems DCS components
			Apply various stability analysis technics to digital control systems
		CO3	Apply various stability analysis technics to non-linear control systems

Dr. JARUPULA SOMLAL
Professor & HOD
Department of EEE
KLEF Deemed to be University
Groen Fleids, Vaudeswaram,
Guntur Dt., A.P.-522 502.

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s, 3 of the UGC Act, 1956)
Accredited by NAAC as 'A+++' ❖Approved by AlCTE ❖ ISO 21001;2018 Certified
Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA
Phone No, +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in
Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph. +91 - 866 - 3500122, 2576129

		CO4	Apply the basics of optimal control problem to state
		001	feedback controller design
×	D	CO1	Understand the power and its quality and system planni
	Distribution	CO2	Analyze the design and operation of distribution feeders
18EE51A2	System Planning & Automation		and loading of transformers.
		CO3	Understand the consumer services in distribution system
		CO4	Analyze the capacitor importance in distribution system
			and the SCADA with required components and its function
	Real Time Control of Power System	CO1	Analyze the load frequency control of power system
18EE5205		CO2	Analyze the economic operation of power system
		CO3	Understand Computer control of power systems
		CO4	Analyze the security control and state estimation
		CO1	Able to Demonstrate the neural network, different
			architectures with different learning types and various
			algorithms for ANN to solve the load forecasting problem
ta .			in Power systems.
		CO2	Use the fuzzy logic concept, fuzzy sets, with suitable
	Al Techniques		membership function with proper de-fuzzification metho
18EE5206	in Power		to control the load frequency in power systems
	Systems	CO3	Understand the Genetic algorithm, encoding, Genetic
			operators, Reproduction operators, mutation operators,
			fitness functions, Genetic modeling
		CO4	Able to apply the different cross over methods and their
			elitism, convergence of algorithm and able to develop and
			analyze the algorithm to economic dispatch problem.
	Smart Grids Technologies	CO1	Understand the basic concepts of smart grid, terminology
			challenges and initiatives.
		CO2	Identify various smart operations of power system
			structure, components, and monitoring techniques.
18EE5207		CO3	Apply smart metering and advanced metering
	3,55		infrastructure with monitoring, protection and measuring
			units.
		CO4	Illustrate various communication protocols and cyber-
			security importance in smart grid.
18EE5208		CO1	Understand the operation of protective equipment and
			adaptive protection

Dr. JARUPULA SOMLAL Professor & HOD Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502.

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' & Approved by AICTE & ISO 21001;2018 Certified
Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA.
Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in
Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 865 - 3500122, 2576129

	T	603	
	Digital Protection of Power System	CO2	Apply various transforms for digital protection of power system
		CO3	Analyze the microprocessor based relays for the protection of power system equipment
		CO4	Analyze travelling wave, AI and FPGA based relays for the
		004	protection of power system equipment
18EE52C1	FACTS Devices	CO1	Understand the importance of FACTS devices and their applications to the Power Systems.
		CO2	Analyze the static shunt compensation and operation of devices under this category.
		CO3	Analyze the static series compensation and operation of devices under this category.
		CO4	Analyze the operation and applications of devices like UPFC and IPFC.
18EE52D2	Power Quality	CO1	Outline basic power quality issues
		CO2	Demonstrate conventional loop control for voltage and current balance
		CO3	Demonstrate DSTATCOM for power quality restoration
		CO4	Apply combined compensation techniques for power quality restoration
	Floating Solar	CO1	Understand the selection of floating solar power plant
	and Off -Shore wind Technologies	CO2	Understand different layouts and selection of converters
19EE52D1		CO3	Understand the operation of off shore wind power plants
		CO4	Compare the operation of floating solar and off shore with power operation
18EE51B2	Digital Signal Processors and Applications	CO1	Outline components of digital signal processing
		CO2	Demonstrate Architecture of TMS320C5X, TMS320C6X and ADSP-21XXprocessors
		CO3	Demonstrate programming of functional units of TMS320C5X, TMS320C6X and ADSP-21XX
		CO4	Develop Signal conditioning and PWM applications with TMS320C5X, TMS320C6X and ADSP-21XX processors
18EE52C3		CO1	Outline elements of propbability and Stochastic processes
,		CO2	Demonstrate parametric and non-parmetric system models

J. contat

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' *Approved by AICTE * ISO 21001(2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Quntur District, Andhra Pradesh, INDIA Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada -520 002, Ph: +91 - 866 - 3500122, 2576129

	Adaptive Control Systems	CO3	Interpret adaptive control techniques to linear systems
		CO4	Apply adaptive control process and asses stability of linear systems
18EE52D2	Power Quality	CO1	Outline basic power quality issues
		CO2	Demonstrate conventional loop control for voltage and current balance
		CO3	Demonstrate DSTATCOM for power quality restoration
		CO4	Apply combined compensation techniques for power quality restoration
19EE52D3	Energy Management	CO1	Outline data acquisition components of power system
		CO2	Demonstrate energy data monitoring, reporting and communication
	Systems	CO3	Apply supervisory control for energy management
		CO4	Illustrate Energy management centre functions
18EE51A1	Reactive Power Compensation & Management	CO1	Distinguish the importance of load compensation in symmetrical as well as unsymmetrical loads
		CO2	Examine various compensation methods in transmission lines
		CO3	Construct model for reactive power coordination
		CO4	Distinguish demand side reactive power management & user side reactive power management
18EE52C2	Energy Conservation	CO1	Understand the concept of Energy Audit and Energy Management
		CO2	Analyze the various characteristics of energy efficient motors
	& Audit	CO3	Analyze the different energy instruments and importance of power factor improvement
		CO4	Analyze the economic aspects of electrical energy
18EE51A3	Power System Reliability	CO1	Understand the system reliability concepts
		CO2	Apply the frequency and duration techniques for component repairable system.
		CO3	Apply the network reliability concepts to generation system reliability analysis.

J. ould Dr. JARUPULA SOMLA Professor & HOD Department of EEE KLEF Deemed to be Univers Green Fields, Vagueswaram, Guntur Dt., A.P.-522 502,

Koneru Lakshmaiah Education Foundation (Category -1, Deomed to be University estd. u/s. 3 of the LIGG Act, 1956)

Accredited by NAAC as "A++"

Approved by AICTE

ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Aridhra Pradesh, INDIA, Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36:38, Museum Road, Governorpet, Vijayawada - 520 002, Ph; +91 - 866 - 3500122, 2576129

		CO4	
		CO4	Apply the network reliability concepts to transmission and
			distribution system reliability analysis.
	Alternative Sources of Electrical Energy	CO1	Understand the concept of Renewable energy resources,
			Distribution Generation and demand side management
18EE51B1		CO2	Analyze the working of Photovoltaic Power Plants
		CO3	Analyze the working of wind power plant and fule cells
		CO4	Analyze the importance of energy storage systems in
			Distributed Generation
	Optimization Techniques	CO1	Understand classical optimization techniques, describe
100			clearly the problems with and without constraints, identify
			its parts and analyze the individual functions, Feasibility
			study for solving an optimization problem.
		CO2	Apply mathematical translation of the verbal formulation of
			an optimization problem and design algorithms of linear
18EE51B3			programming problems, the repetitive use of which will
			lead reliably to finding an approximate solution.
		CO3	Evaluate and measure the performance of an algorithm of
			different methods to solve non-linear programming
			problems, study and solve optimization problems.
		CO4	Analyze optimization techniques using algorithms.
			Investigate, study, develop, organize and promote
			innovative solutions for various applications.

J. Oulul

Dr. JARUP EEEA SOMLAI

Professor 8 HOD

Professor 8 HOD

Department of EEE

KLEF Deemed to be Universit

Green Fields, Vandeswaram,

Guntur Dt., A.P.-522 502.