

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' Approved by AICT A ISO 21001;2018 Certified Campus: Green Fleids, Vaddeswaran - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road. Governorpet, Vijayawada - 520 002. Pii; +91 - 866 - 3500122, 2576129

Department of Electrical and Electronics Engineering

Program: M. Tech - Power Systems

Academic Year: 2018-2019

Course Code	Course Title	CO	Description of the Course Outcome
		CO1	Understand the modelling aspects of power system component and form the network matrices
	Advanced	CO2	Apply mathematical methods for the solution of Power flow problem
18EE5102	Power System Analysis	CO3	Analysis of power system with symmetrical and unsymmetrical faults
		CO4	Analyze the operation of power system under different contingencies
		CO5	Analysis of Power system problems using computer programming.
	Power System Dynamics & Stability	CO1	Analyze Synchronous Machine modeling
18EE5101		CO2	Analyzing power system stability
		CO3	Analyze Small signal stability
		CO4	Analyze Excitation systems and Voltage Stability
		CO1	Understand the market operations in the electricity market
			under deregulated environment, Open Access Same-time
			Information System (OASIS) and Available Transfer Capability
	Deregulated		(ATC).
18EE5103	Operation Of	CO2	Analyze the concepts of Electricity Pricing.
	Power Systems	CO3	Analyze the Power System Operation in Competitive Environment and Market Power.
		CO4	Analyze the concepts of Transmission Pricing and Congestion pricing.
.8EE5104	Modern Control Theory	CO1	Understand the basics of Z-Transforms and Digital control systems DCS components
		CO2	Apply various stability analysis technics to digital control systems
		CO3	Apply various stability analysis technics to non-linear control systems

Professor & Head Department of EEE

KLEF Deemed to be University

Green Fields, Vaddeswaram,

GUNTUR Dt., A.P - 522

Koneru Lakshmaiah Education Foundation
(Gulegory -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 1444 Approved by AICTE 130 2100 (2018 Germed Campus: Green Floids, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.ln; www.klef.adu.in; www.kluniversity.in
Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph; +91 - 866 - 3500122, 2578129

		CO4	Apply the basics of optimal control problem to state feedback
	4		controller design
18EE51A2	Distribution System Planning & Automation	CO1	Understand the power and its quality and system planning
		CO2	Understand the design and operation of distribution feeders ar loading of transformers.
		CO3	
		CO4	Understand the consumer services in distribution system.
		1004	Understand the capacitor importance in distribution system an
		CO1	the SCADA with required components and its function.
	Real Time	CO2	Analyze the load frequency control of power system
18EE5205	Control of	-	Analyze the economic operation of power system
	Power System	CO3	Understand Computer control of power systems
		CO4	Analyze the security control and state estimation
	1	CO1	Able to Demonstrate the neural network, different architecture
			with different learning types and various algorithms for ANN to
	Al Techniques		solve the load forecasting problems in Power systems.
		CO2	Use the fuzzy logic concept, fuzzy sets, with suitable
			membership function with proper de-fuzzification method to
18EE5206			control the load frequency in power systems
	Systems	CO3	Understand the Genetic algorithm, encoding, Genetic operators
8	Systems		Reproduction operators, mutation operators, fitness functions,
			Genetic modeling
		CO4	Able to apply the different cross over methods and their elitism,
			convergence of algorithm and able to develop and analyze the
			algorithm to economic dispatch problem.
	Smart Grids Technologies	CO1	Understand the basic concepts of smart grid, terminology,
			challenges and initiatives.
		CO2	Identify various smart operations of power system structure,
.8EE5207			components, and monitoring techniques.
		CO3	Apply smart metering and advanced metering infrastructure
			with monitoring, protection and measuring units.
		CO4	Illustrate various communication protocols and cyber-security
			importance in smart grid.
0,5555		CO1	
8EE5208	l l	301	Understand the operation of protective equipment and adaptive protection

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd, u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' *Approved by AICTE * ISO 21001:2018 Certified
Campus: Green Flelds, Veddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA.
Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in
Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph; +91 - 866 - 3500122, 2578129

		CO2	Apply various transforms for digital protection of power system
	Digital Protection of Power System		- The system
		CO3	Analyze the microprocessor based relays for the protection of power system equipment
		CO4	Analyze travelling wave, Al and FPGA based relays for the protection of power system equipment
18EE52C1	FACTS Devices	CO1	Understand the importance of FACTS devices and their applications to the Power Systems.
		CO2	Analyze the static shunt compensation and operation of devices under this category.
		CO3	Analyze the static series compensation and operation of devices under this category.
		CO4	Analyze the operation and applications of devices like UPFC and IPFC.
18EE52D2	Power Quality	CO1	Outline basic power quality issues
		CO2	Demonstrate conventional loop control for voltage and current balance
		CO3	Demonstrate DSTATCOM for power quality restoration
		CO4	Apply combined compensation techniques for power quality restoration
	Floating Solar	CO1	Understand the selection of floating solar power plant
	and Off -Shore	CO2	Understand different layouts and selection of converters
19EE52D1	wind Technologies	CO3	Understand the operation of off shore wind power plants
		CO4	Compare the operation of floating solar and off shore with power operation
•	Digital Signal Processors and Applications	CO1	Outline components of digital signal processing
18EE51B2		CO2	Demonstrate Architecture of TMS320C5X, TMS320C6X and ADSP-21XXprocessors
		CO3	Demonstrate programming of functional units of TMS320C5X, TMS320C6X and ADSP-21XX
		CO4	Develop Signal conditioning and PWM applications with TMS320C5X, TMS320C6X and ADSP-21XX processors
18EE52C3		CO1	Outline elements of propbability and Stochastic processes
		CO2	Demonstrate parametric and non-parmetric system models

Professor & Head Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, GUNTUR Dt., A.P - 522.502

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' ◆Approved by AICTE ◆ ISO 21001:2018 Certified
Campus: Green Fields, Veddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA.
Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.ln; www.kluniversity.in Admin Off: 29-36-38, Museum Road. Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129

	Adaptive	CO3	Interpret adaptive control techniques to linear systems
	Control	CO4	Apply adaptive control process and asses stability of linear
	Systems		systems
18EE52D2 Power Quality		CO1	Outline basic power quality issues
	Power Quality	CO2	Demonstrate conventional loop control for voltage and current balance
		CO3	Demonstrate DSTATCOM for power quality restoration
	CO4	Apply combined compensation techniques for power quality restoration	
	Energy Management	CO1	Outline data acquisition components of power system
19EE52D3		CO2	Demonstrate energy data monitoring, reporting and communication
	Systems	CO3	Apply supervisory control for energy management
		CO4	Illustrate Energy management centre functions
	Reactive	CO1	Distinguish the importance of load compensation in symmetrica
	Power Compensation & Management		as well as un symmetrical loads
18EE51A1		CO2	Examine various compensation methods in transmission lines
		CO3	Construct model for reactive power coordination
		CO4	Distinguish demand side reactive power management & user side reactive power management
(4).	ENERGY CONSERVATIO N & AUDIT	CO1	Understand the concept of Energy Audit and Energy Management
40555000		CO2	Analyze the various characteristics of energy efficient motors
18EE52C2		CO3	Analyze the different energy instruments and importance of power factor improvement
		CO4	Analyze the economic aspects of electrical energy
	Power System Reliability	CO1	Understand the system reliability concepts
18EE51A3		CO2	Apply the frequency and duration techniques for component repairable system.
		CO3	Apply the network reliability concepts to generation system reliability analysis.
		CO4	Apply the network reliability concepts to transmission and distribution system reliability analysis.
.8EE51B1	Alternative Sources of	CO1	Understand the concept of Renewable energy resources, Distribution Generation and demand side management

Professor & Head Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, GUNTUR Dt., A.P = 52.2 502

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' & Approved by AICTE & ISO 21001:2018 Certified
Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA.
Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in
Admin 0ff: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Pit: +91 - 866 - 3500122, 2578129

	Electrical	CO2	Analyze the working of Photovoltaic Power Plants
	Energy	CO3	Analyze the working of wind power plant and fule cells
		CO4	Analyze the importance of energy storage systems in Distributed Generation
		CO1	Understand classical optimization techniques, describe clearly the problems with and without constraints, identify its parts and analyze the individual functions, Feasibility study for solving an optimization problem.
18EE51B3	Optimization Techniques	CO2	Design and apply mathematical translation of the verbal formulation of an optimization problem and design algorithms of linear programming problems, the repetitive use of which will lead reliably to finding an approximate solution.
		CO3	Evaluate and measure the performance of an algorithm of different methods to solve non-linear programming problems, study and solve optimization problems.
		CO4	Analyze optimization techniques using algorithms. Investigate, study, develop, organize and promote innovative solutions for various
		CO1	Interpret characteristics of PV System
18EE52D3	Integration of Energy Sources	CO2	Interpret Power electronic converter topologies
		CO3	Illustrate issues in isolated systems
		CO4	Analyze the issues in integration of renewable energy sources
18EE52D1	EHVAC & HVDC Transmission	CO1	Outline operational parameters of EHV-AC transmission
		CO2	Demonstrate various HVDC links
		CO3	Develop insulation design and coordination for HVDC system
		CO4	Demonstrate mechanical design of towers for HVDC and EHV-AC transmission

HOD-EEE

Professor & Head Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, GUNTUR Dt., A.P - 522 502