

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd, u.e. 3 of the UGC Act, 1956)

Accresited by HAAC on Act 3 Adjusted 15, 16512 & 1661 11001 2018 Stational
Category -0 Order Fields, Vaddosweren - 202 302, Cuntur District Andhro Prodoith, INDEA
Phone No. +91 8645 -350 200; www.klef.ac.in, www.klef.edu.in, www.kluniversity.in
Admin off: 20-36-36, Manuala Bourt, Gesamment Visity is acc. -820 002, Rec 191 866 -360 192, 2028 129

Department of Electrical and Electronics Engineering Program: M.Tech - POWER ELECTRONICS AND POWER SYSTEMS

Academic year: 2023-2024

Course Code	Course Title	CO NO	Description of the Course Outcome
		CO1	To develop the skill of contextual Vocabulary and Critical Reading
23UC5201 23EE5207	PROFESSIONAL COMMUNICATION SKILLS	CO2	To demonstrate different types of personal and professional skills and apply them for growth in professional zone.
		CO3	Apply the concepts of Mathematical Principles to solve problems on Arithmetic , Algebra & Geometry to improve problem solving ability.
		CO4	Apply the concepts and using Logical thinking to solve problems on verbal & Non-Verbal Reasoning to develop Logica thinking skills.
	MATLAB PROGRAMMING FOR ENGINEERS	CO1	Apply the fundamentals of MATLAB
		CO2	Analyze the characteristics of electrical system using MATLAB.
		CO1	Understand Conditionals, Iterables, Regex, Files, Error Handling, Data Structures, Algorithm design and Object Oriented Python
23EE5101	PYTHON PROGRAMMING FOR ELECTRICAL SYSTEMS	CO2	Apply object-oriented programming, Python Standard Library, SciPy's optimization and Signal Processing and Linear algebra
		CO3	Apply Data Analysis using Pandas. Apply supervised Learning and Unsupervised Learning techniques using Scikit-Learn
		CO4	Analyse real world electrical engineering problems using pandapower and PyPSA for power system modeling, analysis and optimization.
	El .	CO5	Analyze the applications of Python programming for electrical engineering applications
23EE5102	ADVANCE POWER CONVERTERS	CO1	Analyze the various high power converters and power factor correction.
		CO2	Analyze the performance of Switch-Mode PWM and different control techniques of Inverters
		СОЗ	Apply the principles and usage of multi-level inverters and Z-source inverter.
		CO4	Understand the various applications of power converters with solar systems.

Dr. A. PANDIAN, SMIEEE
Professor & HOD
Department of EEE
KLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.

Koneru Lakshmaiah Education Foundation
(Calegory -1, Deerned to be University estd, u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as AAT - Approved by AIC TE & TEC 21/10 1 2/118 clienthed
Campus: Green Fields, Vaddeswaram 522 305, Suntur District Anthre Product, BIDDIA
Phone No. +91 8845 - 350 200; www.klief.edu.in; www.klief.edu.in; www.klienisety.in
Admin 0ff: 20-38-38, Museum Road, Gevenrapet, Vijoyawade - 520 002, Ptc (81 - 886 - 5500122, 2678129)

		CO5	Demonstrate and test basic power electronic converters by
			hardware realization and MATLAB software.
		CO6	Analyze the various converters application using software tool
		CO1	Understand the power system stability
	POWER SYSTEM	CO2	Apply the small signal stability to power systems
23EE5104	STABILITY &	CO3	Analyze Excitation control and Voltage Stability
	CONTROL	CO4	Analyze power system security control
		CO5	Test the small signal stability and power system security using MATLAB
		CO1	Model dunamics of AC machines
	ADVANCED	CO2	Analyze vector control of three phase induction motor
23EE5212	ELECTRIC DRIVES	CO3.	Analyze SRM drive performance
		CO4	Analyze BLDC motor drive performance
		CO1	Apply programming principles of FPGA
		CO2	Develop digital protection and PWM applications with FPGA
23EE5213	DIGITAL CONTROLLERS		control
	CONTROLLING	CO3	Apply programming principles of sequential digital Processor
	A*	CO4	Develop power conversion control with digital processor
	,	CO1	Apply the basic concepts of Electromagnetic Energy Conversion
	MODELLING AND		Principles to DC Machines
		CO2	Understand the mathematical model of three phase induction
23EE5111	ANALYSIS OF ELECTRICAL		motor.
	MACHINES	CO3	Illustrate the dynamic behavior of synchronous machines
	TVII TET III TES		under different operating conditions.
	¥ • •	CO4	Analysis of special machines
		CO1	Classical optimization techniques, describe clearly the
			problems with and without constraints, identify its parts and
			analyze the individual functions, Feasibility study for solving ar
			optimization problem.
		CO2	Design and apply mathematical translation of the verbal
	kee o		formulation of an optimization problem and design algorithms
23EE51F1	OPTIMIZATION		of linear programming problems, the repetitive use of which
23111	TECHNIQUES		will lead reliably to finding an approximate solution.
		CO3	Evaluate and measure the performance of an algorithm of
			different methods to solve non-linear programming problems,
			study and solve optimization problems.
		CO4	Analyze optimization techniques using algorithms. Investigate,
		1	
			study, develop, organize and promote innovative solutions for

Dr. A. PANDIAN, SMIEEE

Professor & HOD
Professor & HOD
Department of EEE

MLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.

Kongru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

**RedMedited by NAAC IR: Arm seApproximate the Section 1901 2018 Continual
Campus: Grown Fields. Vaddoswaram -522 302, Guntur District Anothers Probeids, INDBA
Phone No. +91 8845 - 350 200; www.klet.ac.in; www.klet.acturis www.kletinesturis www.kleuniversity.in
Admin off: 29-36-38. Museum Road, Governorpel, Visyswada - 520 002. Ph. 191 885 - 3500127 2578120

		CO1	Understand the system reliability serves to
			Understand the system reliability concepts
		CO2	Apply the frequency and duration techniques for component
51 V6	. RELIABILITY	1.00	repairable system.
23EE51F2	ENGINEERING &	CO3	Apply the network reliability concepts to generation system
	APPLICATION TO		reliability analysis.
	POWER SYSTEMS	CO4	Apply the network reliability concepts to transmission and
			distribution system reliability analysis.
		CO5	Test the network reliability using MATLAB
	(A)	CO1	Understand batteries' basic chemistry, figure of merits, energy,
			and power density limits
	2	CO2	Identify the advantage and disadvantages of using alternative
23EE51B2	ENERGY STORAGE		battery types
23223102	SYSTEMS	CO3	Examine battery testing standards, battery charging systems
			and state of charge measurement techniques
		CO4	Learn about a variety of applications such as automotive and
	N 12 1508	-0 ma -	grid-energy storage systems
	EV BATTERIES & CHARGING SYSTEM	CO1	Analyze the LLC resonant converters topology for EV charger.
		CO2	Apply battery system for EV and cell balancing.
23EE51B1		CO3	Apply the Wireless Power Transfer charging techniques for
20220101			Electric Vehicles
		CO4	Apply the charger infrastructure system and impact with grid
		CO5	Analyze the EV charger converters using software tools
	ENERGY CONSERVATION & AUDIT	CO1	Understand the concept of Energy Audit and Energy
			Management
23EE52C2		CO2	Compare energy efficient motors and normal motors
252252		CO3	Analyse the different energy instruments and importance of
8 0			power factor improvement
		CO4	Analyse the economic aspects of electrical energy
	FACTS & POWER QUALITY	CO1	Understand the importance of FACTS devices and their
			applications to Power Systems.
		CO2	Analyze the static shunt and series compensation and
23EE52G1			operation of devices under this category.
		CO3	Apply DSTATCOM for power quality restoration
		CO4	Apply combined compensation techniques for power quality
			restoration and fault ride-through.

Dr. A. PANDIAN, SMIEEE
Professor & HOD
Department of EEE
KLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accided that Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accided that Deemed to Act Televis Act Televis Computer (Andhred Pradesh), INDIA
Camputer Green Fields, Viddeswarenn - 522 302, Guntur District, Andhred Pradesh, INDIA
Phone No. +91 8645 - 350 200: www.klef.act.in; www.klefi.edu.in; www.klefi

		CO1	Apply the Pspice modelling of power semiconductor devices
			and passive components behavior with protection circuits
	DIGITAL	CO2	Apply the controllers on AC-DC controlled, uncontrolled
	SIMULATION OF		converters and DC-DC converters using Pspice and MATLAB
23EE52H1	POWER		Simulink model.
	ELECTRONIC	CO3	Apply the DC-AC converters performance using modern
M 10 M	SYSTEMS		simulation tools
		CO4	Apply various the performance analysis of PWM methods of
			voltage control in single phase
		CO1	Analyse the Non-isolated dc-dc converter under CCM and DCM
	SWITCHED MODE		operation ·
	SWITCHED MODE POWER SUPPLY	CO2	Apply the modelling of SMPS and output stage amplification.
23EE52H2	AND PWM	CO3	Analyse the Isolated dc-dc converters under various modes and
	TECHNIQUES		high frequency transformer design.
		CO4	Apply the various modes of bidirectional dc-dc converters in
			different control strategy.
		CO1	Illustrate Research objects, steps involved in research and
			articulate appropriate Research Questions
	ESSENTIALS OF RESEARCH DESIGN	CO2	Perform Literature Review in a Scholarly style and apply
23IE5201			appropriate methods for Data collection
		CO3	Represent the data in tabular/Graphical form and prepare data
			for analysis
		CO4	Perform statistical modelling and analysis to optimize the data,
			prepare the data for publishing.
23EE53E1		CO1	Select suitable battery for electric vehicle
	BATTERY	CO2	Analyse the key functions of Battery management systems
	MANAGEMENT SYSTEMS	CO3	Analyse various mathematical models of battery
		CO4	Evaluate Algorithms for SOC estimation of battery
23EE53E2	GREEN BUILDINGS AND SMART CITIES	CO1	Understand the principles of green buildings and
		CO2	Environmental impact of buildings
		CO3	Apply the Energy management and conservation strategies
		CO4	Analyze the smart sub-station operation and applications in
			smart grids.

Dr. A. PANDIAN, SMIEEE

Professor & HOD

Professor of EEE

Department of EEE

KLEF Deemed to be University

KLEF Deemed Vaddeswaram,

Green Fields, A.P., 522 502.