Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956) Accredited by NAAC as 'A++' * Approved by AICTE * ISO 21001,2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA, Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.klef.ed Admin Off: 29-36-36, Museum Road, Governorpet, Vijayawado - 520 002, Ph. +91 - 866 - 3500122, 2576129 # **Department of Electrical and Electronics Engineering Program: M. Tech - Power Electronics & Power Systems** Academic Year: 2022-2023 | Academic Year: 2022-2023 | | | | | |--------------------------|---|----------|---|--| | Course
Code | Course Title | CO
NO | Description of the Course Outcome | | | 22EE5111 | ANALYSIS OF POWER
CONVERTERS | CO1 | Analyze the various high power controller converters and power factor correction. | | | | | CO2 | Analyze the performance of Switch-Mode PWM and different control techniques for Inverters | | | | | CO3 | Analyze the operation of multi-level to inverters and Z-source inverter. | | | | | CO4 | Understand the various applications of power converters with solar systems | | | | | CO5 | Demonstrate and test basic power electronic converters by hardware realization and MATLAB software. | | | | ADVANCED POWER
SYSTEM ANALYSIS AND
PROTECTION | CO1 | Apply mathematical methods for the solution of Power flow problem | | | 22EE5112 | | CO2 | Analyze of power system with symmetrical and unsymmetrical faults | | | | | CO3 | Apply power system protection equipment | | | | | CO4 | Apply digital relaying algorithms for protection of power system equipment | | | 22EE5113 | MODELING AND
ANALYSIS OF
ELECTRICAL
MACHINES | CO1 | Apply the basic concepts of Electromagnetic Energy Conversion Principles to DC Machines | | | | | CO2 | Understand the performance of electrical machines through mathematical modelling | | | | | CO3 | Illustrate the dynamic behaviour of electrical machines under different operating conditions | | | * | | CO4 | Analysis of special machines | | | 22EE5104 | EMBEDDED
CONTROLLERS AND
APPLICATIONS | CO1 | Apply Programming of 8051 Microcontroller for general purpose applications | | | | | CO2 | Apply programming concepts of 8051 for interfacing peripherals | | | | | CO3 | Demonstrate Architecture and Programming of PIC Microcontroller | | | | | CO4 | Apply programming concepts of 8051 and PIC Microcontroller for interfacing peripherals | | | | | CO5 | Apply programming concepts of the 8051and PIC microcontroller | | | 22EE5211 | | CO1 | Understand the modeling of AC machines | | Dr. JARUPULA SOMLA Professor & HOD Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502. Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s, 3 of the UGC Act, 1956) Accredited by NAAC as 'A++' ◆ Approved by AICTE ◆ ISO 21001;2018 Certified Campus: Green Fields. Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA, Phone No. +91 8845 - 350 200; www.klef.ac.in; www.klef.adu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129 | | ADVANCED
ELECTRICAL DRIVES | CO2 | Contrast the speed control performance of 3-Phase induction and synchronous motor drive using vector control methods | |-----------|--|-----|---| | | | CO3 | Analyze the dynamic behavior of SRM motor drives under various control methods | | | | CO4 | Distinguish the performance of BLDC Motor drive using various control techniques | | | | CO5 | Demonstrate and test electric converters by hardware realization and MATLAB software | | 280 | POWER SYSTEM STABILITY& CONTROL | CO1 | Analyze Synchronous Machine modeling | | 22EE5212 | | CO2 | Analyzing power system stability | | | | CO3 | Analyze Small signal stability | | 8 | | CO4 | Analyze Excitation control and Voltage Stability | | 1 | | CO1 | Understand renewable energy Systems | | | GRID INTEGRATION OF | CO2 | Apply grid integrated techniques for solar PV System. | | 22EE5213 | RENEWABLE ENERGY | CO3 | Apply grid integrated techniques for wind energy System. | | | SYSTEMS | CO4 | Understand grid operation and control methods and standards. | | | AL AND LOT FOR | CO1 | Demonstrate IoT devices and tools | | 22EE5204 | AI AND IOT FOR
MODERN ELECTRICAL
SYSTEMS | CO2 | Operate the cloud system Environment | | 22113204 | | CO3 | Utilize Al and ML Techniques | | | | CO4 | Utilize AI techniques for electrical systems | | | | CO1 | Understand the system reliability concepts | | 22EE51A1 | RELIABILITY
ENGINEERING | CO2 | Apply the frequency and duration techniques for component repairable system. | | | | CO3 | Apply the network reliability concepts to generation system reliability analysis. | | it | | CO4 | Apply the network reliability concepts to transmission and distribution system reliability analysis. | | | PROGRAMMING IN ELECTRICAL SYSTEMS | CO1 | Understand Conditionals, Iterables, Regex, Files, Error
Handling, Data Structures, Algorithm design and Object-
Oriented Python | | | | CO2 | Apply object-oriented programming, Python Standard Library, SciPy's optimization and Signal Processing and Linear algebra | | 22EE51A2 | | CO3 | Understand Data Analysis using Pandas. Apply supervised Learning and Unsupervised Learning techniques using Scikit-Learn | | * | | CO4 | Analyse real world electrical engineering problems using pandapower and PyPSA for power system modeling, analysis and optimization. | | <i>y</i> | | CO5 | Analyze the applications of Python programming for electrical engineering applications | | 22EE51A3: | | CO1 | Understand data acquisition components of power system | J. onlal Dr. JARUPULA SOMLAL Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502, Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956) Accredited by NAAC as 'A++' & Approved by AICTE & ISO 21001;2018 Cardinad Campus: Green Fields. Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-38-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129 | | ENERGY
MANAGEMENT | CO2 | Understand energy data monitoring, reporting and communication | |-----------|--|-----|---| | | SYSTEMS | CO3 | Apply supervisory control for energy management | | | 0.0121110 | CO4 | Understand Energy management center functions | | 22EE51B1: | OPTIMIZATION
TECHNIQUES | CO1 | Understand classical optimization techniques, describe clearly the problems with and without constraints, identify its parts and analyze the individual functions, Feasibility study for solving an optimization problem. | | | | CO2 | Apply mathematical translation of the verbal formulation of
an optimization problem and design algorithms of linear
programming problems, the repetitive use of which will lead
reliably to finding an approximate solution. | | | | CO3 | Analyze and measure the performance of an algorithm of different methods to solve non-linear programming problems, study and solve optimization problems. | | | | CO4 | Analyze optimization techniques using algorithms. Investigate study, develop, organize and promote innovative solutions for various applications. | | | | CO1 | Apply the mathematical representation to dynamic systems | | 22EE51B2 | ADVANCED CONTROL | CO2 | Apply the techniques to design the controllers | | | THEORY | CO3 | Apply the techniques to identify non linear system stability | | 21 | | CO4 | Apply the algorithms for stability analysis | | | DEREGULATED
POWER SYSTEMS | CO1 | Understand the market operations in the electricity market under deregulated environment, Open Access Same-time Information System (OASIS) and Available Transfer Capability (ATC). | | 22EE51D3 | | CO2 | Analyze the concepts of Electricity Pricing. | | | | соз | Analyze the Power System Operation in Competitive Environment and Market Power. | | | | CO4 | Analyze the concepts of Transmission Pricing and Congestion pricing. | | | DIGITAL SIMULATION
OF POWER
ELECTRONIC SYSTEMS | CO1 | Design of non-isolated and isolated DC-DC converters | | 22EE52A1 | | CO2 | Understand the working of Resonant converters | | 22EE52A1 | | CO3 | Modelling of non-isolated DC -DC converters | | | | CO4 | Design of closed loop controls for switched mode power supplies | | 22EE52A2 | SWITCHED MODE
POWER SUPPLIES | CO1 | Understand Pspice modelling of power semiconductor devices and passive components behaviour with protection circuits. | | | | CO2 | Analyse performance of AC-DC controlled, uncontrolled converters and DC-DC converters using Pspice and MATLAB Simulink model. | | | | CO3 | Evaluate DC-AC converters performance using modern simulation tools. | Dr. JARUPULA SOMLA Professor & HOD Department of EEE KLEF Deemed to be Universit Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502. ## Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956) Accredited by NAAC as 'A++' ◆ Approved by AICTE ◆ ISO 21001,2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA, Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.klunivoroity.in Admin Off: 29-26-38, Mucoum Road, Covernorpst, Vijuyuwada - 520 002, Ph. +91 - 866 - 3500122, 2576129 | | | CO4 | Analyse AC voltage controller and cyclo-converter performance with programming and simulation tools. | |----------|-------------------------------------|-----|--| | 22EE52C3 | FACTS & POWER
QUALITY | CO1 | Understand the importance of FACTS devices and their applications to the Power Systems. | | | | CO2 | Analyse the static shunt and series compensation and operation of devices under this category. | | | | CO3 | Apply DSTATCOM for power quality restoration | | | | CO4 | Apply combined compensation techniques for power quality restoration and fault ride through. | | 22E52D1 | SMART GRID
TECHNOLOGIES | CO1 | Understand the basic concepts of smart grid, terminology, challenges and initiatives. | | | | CO2 | Identify various smart operations of power system structure, components, and monitoring techniques. | | | | CO3 | Apply smart metering and advanced metering infrastructure with monitoring, protection and measuring units. | | | | CO4 | Illustrate various communication protocols and cyber-security importance in smart grid. | | 22E52D2 | ENERGY
CONSERVATION &
AUDIT | CO1 | Understand the concept of Energy Audit and Energy Management | | | | CO2 | Analyze the various characteristics of energy efficient motors | | | | CO3 | Analyze the different energy instruments and importance of power factor improvement | | | | CO4 | Analyze the economic aspects of electrical energy | | 22E52D3 | SMART APPLIANCE
AND SMART CITIES | CO1 | Evaluate the characteristics of smart home appliances. | | | | CO2 | Understand the essential elements of smart cities | | | | CO3 | Analyze the Characteristics of a Smart City | | | | CO4 | Apply the Designing, and Implementing a Smart City | Dr. JARUHOD-EEEIOD Professor of EEE Department of EEE Department of be University KLEF Deemed to be University Green Fields, Vaddeswaram, Green Fields, Vaddeswaram, Guntur Dt., A.P.-522 502,