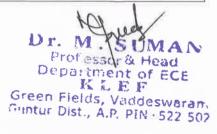
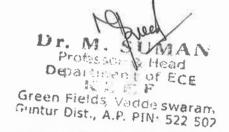
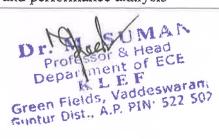

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ◆Approved by AICTE ❖ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129


Department of Electronics and Communication Engineering Program: M.Tech.- Embedded Systems

Academic Year 2023-2024


COURSE CODE	COURSE NAME	CO NO	COURSE OUTCOME
	NON-LINEAR SYSTEMS AND CONTROL OPTIMIZATION	1	Introduce the need and concept of nonlinear system and optimizations for robotics
		2	Impart knowledge about different strategies adopted in the of nonlinear systems for robotics engineering
23RA5001		3	Apply constrained optimization to various physical systems. Implement optimal control algorithms to track the response of the system through a predefined trajectory
		4	Familiarize with the design of different types of nonlinear Robotics controllers
	Embedded Controllers & SOCs	1	Understand the concept of embedded system, microcontroller, different components of a microcontroller, and their interactions.
23ES5101		2	Get familiarized with the programming environment to develop embedded solutions.
25E55101		3	Program ARM microcontroller to perform various tasks.
		4	Understand the key concepts of embedded systems such as I/O, timers, interrupts, and interaction with peripheral devices.
	EMBEDDED HARDWARE AND SOFTWARE CO- DESIGN	1	Able to Understand the fundamental concepts of embedded systems, including their definition, classification, purpose, and core components.
23ES5102		2	Able to identify and apply the different computational models used in embedded system design.
		3	Able to apply the knowledge to design and develop embedded hardware and firmware.
		4	Able to apply knowledge to prototype, emulate, test, and package embedded systems.


COURSE CODE	COURSE NAME	CO NO	COURSE OUTCOME
23ES5103	M2M TECHNOLOGY: IOT	1	Able to Understand the basics of IoT, including its technologies, architecture, and design methodologies
		2	Able to Understand the hardware and software components of IoT systems, as well as the security and application development.
		3	Able to understand the challenges and solutions for M2M communication in constrained devices and able to design and implement M2M communication solutions for real-world applications.
		4	Able to understand IoT data management and analytics, as well as the design and commercialization of IoT products and services.
	Artificial Intelligence and Machine Learning	1	Understanding of basic search algorithms
		2	Study and applications of ANN and deep learning
23EC5101		3	Application of various ML techniques of kMeans, kNN, SVM and GMM
		4	Understand various advanced computing methods
23ES5204	REAL TIME EMBEDDED SYSTEMS	1	Apply the task-scheduling algorithms for real-time systems and embedded application
		2	Apply Multiprocessor scheduling and real-time communication, databases, and synchronization.
		3	Apply an RTOS and be able to interpret the feasibility of a task set to accomplish and Timers.
		4	Analyse model-driven development approaches to construct an execution environment with case studies.
23ES5105	IoT System Design Techniques	1	Understand various building blocks and working of state-of-the-art IoT systems and IoT system design enabling technologies.
		2	Understand the Real-world design constraints and design and develop the system with Hardware and software tools.
		3	Understand the Product Design and Development process and gain enough insights to conceive and build IoT systems on their own
		4	Apply the design concepts for Industrial IoT and Health Care applications.
23ES5301	Advanced Embedded	1	Understand the ARM Cortex-M4 architecture of


COURSE CODE	COURSE NAME	CO NO	COURSE OUTCOME
	System Design		embedded systems
		2	Understand the onboard protocols used in the Embedded system and testing and debugging.
		3	Design concepts needed to build an embedded system using RTOS
		4	Analyze the insights of RTOS internal design and implementation
		1	Implement fundamental image processing techniques required for computer vision.
	DIGITAL TWINS MODEL-BASED EMBEDDED SYSTEMS	2	Apply Hough Transform for line, circle, and ellipse detections
23ES5302		3	Apply 3D vision techniques. Implement motion-related techniques; develop applications using computer vision techniques.
		4	Understands motion analysis. To study some applications of computer vision algorithms.
	RECONFIGURABL E HARDWARE DESIGN	1	Understand the foundational principles of reconfigurable hardware design, including the architecture and components of Field-Programmable Gate Arrays (FPGAs)
23ES5303		2	Demonstrate proficiency in using Hardware Description Languages (HDLs) such as Verilog or VHDL
		3	Develop the ability to design and implement complex digital systems using reconfigurable hardware, incorporating concepts such as finite state machines
		4	Analyzing timing constraints, performing timing analysis, and optimizing reconfigurable hardware designs to meet performance requirements
23ES5304	Data Bases, Data Modeling & Data Structure	1	Understanding of database systems and architecture, and data models.
		2	Understand and characterize modern techniques of database information.
		3	Understand the concept of database to identify information and ER Modelling.
/		4	Apply the concurrency control, recovery, security, and indexing for the real-time data

COURSE CODE	COURSE NAME	CO NO	COURSE OUTCOME
23IE5149	TERM PAPER	1	Enhancing the skill sets in research by recognizing and identifying problems, exploring/defining the problem by gathering information, formulation of the research objectives, and addressing the problem through scientific process and methods.
23ES5402	IOT & EDGE COMPUTING AND MOBILE APPLICATIONS	1	Understand various Edge computing scenarios and case studies. Understand the Edge computing Architectures and
		3	protocols. Develops mobile computing and standardized
		4	hardware and software platforms. Apply the Edge concepts for Mobile application development.
	System on Chip Design	1	Acquire knowledge about Top-down SoC design flow
23ES5403		2	Understand the system-level design of communication networks.
23233403		3	Apply system-level design and analyze MPSoC concepts
		4	Acquire knowledge about NoC
	Block Chain & Cyber Security	1	Understand emerging abstract models for Blockchain Technology
		2	Analyze the concept of bitcoin and the mathematical background behind it
23ES5404		3	Apply the tools for understanding the background of cryptocurrencies
		4	Identify major research challenges and technical gaps existing between theory and practice in the cryptocurrency domain
23ES5401	ADVANCED EMBEDDED SOFTWARE DEVELOPMENT	1	Understanding of the principles and concepts underlying embedded systems
		2	Apply the code for memory usage, performance, and power efficiency in embedded systems
		3	Developing, configuring RTOS into embedded systems, including task scheduling, resource management, and synchronization mechanisms.
		4	Apply techniques for debugging and optimizing embedded software, including the use of debugging tools, code profiling, and performance analysis

COURSE CODE	COURSE NAME	CO NO	COURSE OUTCOME
23ES5502	SYSTEMS FOR SMART CITY AND SMART VILLAGE	1	Understanding the systems and smart systems with local requirements issues and solutions
		2	Apply of System for smart villages with different modules of smart villages with privacy and security
		3	Apply System for smart cities with different management modules of smart cities.
		4	Apply the next generation needs for smart Systems and Smart Global System.
23ES5503	MICRO- AND NANO-EMBEDDED SYSTEMS	1	Understanding of the principles and concepts underlying micro- and nano-embedded systems, including their architectures, design methodologies
		2	Apply the skills in programming microcontrollers and nanodevices, including low-level programming languages
		3	Design and implement micro- and nano-embedded systems for specific applications, incorporating sensors, actuators, communication interfaces.
		4	Explore emerging trends in IoT, wearable devices, biomedical implants, and energy harvesting.
23ES5501	INDUSTRIAL AUTOMATION SYSTEM DESIGN	1	Understanding of the principles and concepts underlying industrial automation systems, including sensors, actuators, control systems
		2	Apply the skills in programming Programmable Logic Controllers (PLCs) using ladder logic or other programming languages
		3	Demonstrate the ability to design and integrate control systems for industrial automation applications.
		4	Design and implement Human-Machine Interfaces (HMIs) for industrial automation systems.
23ES5504	Energy Harvesting Technologies for IoT	1	Understand the concepts of renewable energy systems and energy harvesting for WSN.
		2	Understand the solar energy harvesting technologies and designing solar power systems for IoT.
		3	Apply mechanical energy harvesting technology for WSN and design a system for real-world problems
		4	Apply Electromagnetic energy harvesting technologies for small-power applications and current research on hybrid systems.
23ES5601	Optimization	I	Understand Machine Learning based Optimization

COURSE CODE	COURSE NAME	CO NO	COURSE OUTCOME
	algorithms for		models for various problem-specific solutions.
	autonomous systems	2	Apply evolutionary programming and strategies in engineering aspects.
		3	Design Mathematical Models of Genetic Algorithms fitness functions.
		4	Apply and analysis of advanced autonomous optimization techniques.
		1	Knowledge of theory and practice related to Industrial IoT Systems
23ES5602	HoT 4.0 for	2	Ability to identify, formulate and solve engineering problems by using Industrial IoT
23033002	Automation in Industries	3	Knowledge of the design and analysis of Cyber- Physical System
		4	Ability to implement real field problems by gaining knowledge of Industrial applications.
	MEMS SENSORS AND ACTUATORS	1	Ability to understand the operation of micro devices, micro systems and their applications
AADQ (() A		2	Ability to design the micro devices, micro systems using the MEMS fabrication process
23ES5603		3	Gain a knowledge of basic approaches for various sensor design
		4	To understand various MEMS based sensors for various applications
	Cyber Physical Systems	1	Understand the basics of cyber physical systems.
23ES5604		2	Enumerates several fields where cyber-physical systems are widely used.
		3	Design and develop robotics algorithms and cyber physical systems
		4	Apply modern tools to develop CPS applications
21IN5204	Big data Analytics for IoT	1	Big Data Science and Machine Intelligence
		2	Machine Learning for Big Data in Healthcare Applications
		3	Apache Hadoop and Apache Spark
		4	Data Analytics using Azure

Academic Professor I/C

Professor & Head
Department of ECE
K. L. E. F.
Green Fields, Vaddeswaram
Guntur Dist., A.P. PIN: 522 507