Genomics and Proteomics Research Center

Department of Biotechnology Koneru Lakshmaiah Education Foundation

Salient Features

- Cutting-edge Research and Technology
- Interdisciplinary Collaboration
- Translation and Application

Goal: To establish state of art facility At KL Deemed University to understand and identify specific disease marker against Brain cancer, Breast cancer using functional genomics and proteomics facility.

Objectives

- 1. Understanding genetic, epigenetics aspects of various cancers
- 2. In depth investigation of proteomic modifications in brain, breast and Blood cancers
- 3. Molecular aspects of cancer disease diagnosis *via* miR-lncRNA expression in patient samples
- 4. Methods to investigate the microbial pathogenesis by proteomics and genomics approach.

Group Head: Dr. M. Janaki Ramaiah, Professor Biotechnology Team Members

Dr. Nadheem Siddique, Assoc Professor

Dr. Y. Rajesh, Assistant Professor

Dr. Sarada Mallick, Assistant Professor

Dr. Burra PVLS Prasad, Professor

Dr. Ragini Singh, Associate Professor

Dr. B. Srinivas, Associate Professor

References

Mekala, J. R., Kurappalli, R. K., Ramalingam, P., & Moparthi, N. R. (2021). N-acetyl laspartate and Triacetin modulate tumor suppressor MicroRNA and class I and II HDAC gene expression induce apoptosis in Glioblastoma cancer cells in vitro. *Life sciences*, 286, 120024.

Mekala, J. R., Ramalingam, P. S., Mathavan, S., Yamajala, R. B., Moparthi, N. R., Kurappalli, R. K., & Manyam, R. R. (2022). Synthesis, in vitro and structural aspects of cap substituted Suberoylanilide hydroxamic acid analogs as potential inducers of apoptosis in Glioblastoma

cancer cells via HDAC/microRNA regulation. Chemico-biological interactions, 357, 109876.

Srinivas, C., Swathi, V., Priyanka, C., Anjana Devi, T., Subba Reddy, B. V., Janaki Ramaiah, M., ... & Bhadra, M. P. (2016). Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. *Apoptosis*, *21*, 1249-1264.

Srinivas, C., Swathi, V., Priyanka, C., Anjana Devi, T., Subba Reddy, B. V., Janaki Ramaiah, M., ... & Bhadra, M. P. (2016). Novel SAHA analogues inhibit HDACs, induce apoptosis and modulate the expression of microRNAs in hepatocellular carcinoma. *Apoptosis*, *21*, 1249-1264.

Ramaiah, M. J., Lavanya, A., Honarpisheh, M., Zarea, M., Bhadra, U., & Bhadra, M. P. (2014). miR-15/16 complex targets p70S6 kinase1 and controls cell proliferation in MDA-MB-231 breast cancer cells. *Gene*, *552*(2), 255-264.

Janaki Ramaiah et al. (2023). High glucose modulates cancer cell fate by regulation of mTOR-HDAC-microRNA aixs. Research square. MEBR revison

Protein signalling pathways identified in GBM cancer.

In case high glucose and rapamycin treatment the down-regulated genes such as Bromodomain adjacent to zinc finger domain protein 2B 0.00729913; Protein phosphatase 1 regulatory subunit 3A; Transcription initiation factor TFIID subunit 9 0.160413561; Rho guanine nucleotide exchange factor 26 0.29819726; Cell division cycle 5-like protein 0.326279793, Mitogen-activated protein kinase kinase kinase 0.357006971; Rho GTPase-activating protein 9 0.339595511; Epidermal growth factor receptor 0.394553708, Histone-lysine N-methyltransferase SETD1A 0.436049294; Ribosomal protein S6 kinase alpha-3 0.491644208. The genes that are upregulated in rapamycin are Cullin-4A 2.013752683, Microtubule-associated protein 4 2.944679677; Histone-lysine N-methyltransferase 21.54190124

In high glucose and torin treated U87MG cells histone lysine N-methyltransferase 0.016739231; LIM domain-containing protein ajuba 0.186373986. Protein kinase C-binding protein 1 0.339595511; Microtubule-associated protein 1S 0.491644208; Guanine nucleotide exchange factor subunit RIC1 0.477113911. Further, the genes that are upregulated torin treated samples Rho guanine nucleotide exchange factor TIAM1 41.33; Mitogenactivated protein kinase kinase kinase 42.247907992. Over all the score below 0.5 are down-regulated protein expression and above 2.0 are considered as upregulated genes

Figure 1. U87MG cells grown in high glucose and then treated with Rapamycin. The Rapamycin treated GBM cancer cells were subjected to proteomics study. A, B, C represents 3 runs.

Realtime PCR

Fermentation

Flow-cytometry

Multimode <u>varioskan</u>

HPLC

Computer system for analysing data

-20^{0C}fridge

List of Publications:

S.No	Authors	Title	Year	Source title
	Mekala J.R.;			
	Ramalingam			
	P.S.;			
	Mathavan S.;			
	Yamajala			
	R.B.R.D.;			
	Moparthi			
	N.R.;	Synthesis, in vitro and structural aspects of cap		Chamina
	Rurappalli R.K. Manyam	substituted Suberoylamilde Hydroxamic acid analogs		Chemico- Biological
1	R R	cancer cells via HDAC /microRNA regulation	2022	Interactions
	N.N.		2022	Interactions
		Corrigendum to "mTOR inhibition and p53		
		activation, microRNAs: The possible therapy against		
		pandemic COVID-19― [Gene Rep. 20 (2020)		
		100765](S2452014420301795)(10.1016/j.genrep.2020		
2	Ramaiah M.J.	.100765)	2021	Gene Reports
				Molecular
	Ramaiah M.J.;	mTOR-Rictor-EGFR axis in oncogenesis and diagnosis		Biology
3	Kumar K.R.	of glioblastoma multiforme	2021	Reports
	Ramaiah M.J.;			
	Tangutur A.D.;	Epigenetic modulation and understanding of HDAC		
4	Manyam R.R.	inhibitors in cancer therapy	2021	Life Sciences
	Naushad S.M.;			
	Janaki			
	Ramaiah M.;			
	Kutala V.K.;			Dia and a state
_	Hussain I.;	Pharmacogenetic determinants of thiopurines in an	2024	Pharmacologi
5	Alrokayan S.A.	Indian conort	2021	cal Reports
	Mekala J.R.:			
	Kurappalli			
	R.K.;	N-acetyl L-aspartate and Triacetin modulate tumor		
	Ramalingam	suppressor MicroRNA and class I and II HDAC gene		
	P.; Moparthi	expression induce apoptosis in Glioblastoma cancer		
6	N.R.	cells in vitro	2021	Life Sciences

1	I			
	Pamaiah M L ·	Corrigendum to atcord induced modifications and modulations of microPNAs and long non-coding PNAs		
	Divvapriva K.:	for future therapy against Glioblastoma		
	Kumar S.K.;	Multiforme― [Gene 723 (2020) 144126] (Gene		
	Rajesh	(2020) 723, (\$0378111919307851),		
7	Y.B.R.D.	(10.1016/j.gene.2019.144126))	2021	Gene
0	Pamaiah M I	mTOR inhibition and p53 activation, microRNAs: The	2020	Cono Poporto
0	Ramaiah M.J.:		2020	
	Karthikeyan			
	D.; Mathavan			
	S.; Yamajala			
	R.B.R.D.; Pamachandra			Environmenta
	n S.: Vasavi			l Toxicology
	P.J.;	Synthesis, in vitro and structural aspects of		and
	Chandana	benzothiazole analogs as anti-oxidants and potential		Pharmacolog
9	N.V.	neuroprotective agents	2020	у
	Janaki			
	Ramaiah M.;			
	Divyapriya K.;			
	Kartik Kumar	Drug-induced modifications and modulations of microPNAs and long non-coding PNAs for future		
10	Y.B.R.D.	therapy against Glioblastoma Multiforme	2020	Gene
	Donoth C.			
	Tangutur A D ·			
	Anthappagud			Biomedicine
	em A.;	Cloning and in vivo metabolizing activity study of		and
	Ramaiah J.;	CYP3A4 on amiodarone drug residues: A possible		Pharmacothe
11	Bhukya B.	probiotic and therapeutic option	2020	rapy
	Ramaiah M.J.;			
	Vasavi P.J.;			
12		rotentials of mik-15/16 targeting cancer stem cell nathways: Novel implication in cancer chemotherapy	2020	Gene Reports
		passing of the terminiplication in cancel encinotierapy	2020	Serie Reports

		Corrigendum to "Functions and epigenetic aspects		
		of miR-15/16: Possible future cancer therapeutics―		
		(2018) 12 (149†"164), (S2452014418300748),		
13	Ramaiah M.J.	(10.1016/j.genrep.2018.06.012))	2020	Gene Reports
	Naushad S.M.;			
	Hussain T.:			
	Alrokayan			
	S.A.; Ramaiah			
14	V.K.	in silico analysis of the structural and functional implications of SI C19A1 R27H polymorphism	2019	Journal of Genetics
	Naushad S.M.;			00.00
	Rama Devi			
	A.R.; Hussain T.: Alrokavan			
	S.A.; Janaki			
	Ramaiah M.;	In silico analysis of the structural and functional		Journal of
15	Kutala V.K.	implications of SLC19A1 R27H polymorphism	2019	genetics
		Functions and epigenetic aspects of miR-15/16:		
16	M. J.R.	Possible future cancer therapeutics	2018	Gene Reports
	Dadmal T.L.;			
	K.; Kumbhare			
	R.M.; Mondal			
	T.; Ramaiah	Synthesis and biological evaluation of triazole and		New Jeurnel
17	M.J.; Bhadra M.P.	derivatives as potent cytotoxic agents	2018	of Chemistry
				,
		BMI1 and PTEN are key determinants of breast cancer		
10	M. J.R.;	therapy: A plausible therapeutic target in breast	2010	Cana
10	Mekala J.R.:		2018	Gene
	Naushad S.M.;			
	Ponnusamy			
	L.; Arivazhagan			
	G.;			
	Sakthiprasad	Epigenetic regulation of miR-200 as the potential		
19	v.; Pal-Bhadra M.	strategy for the therapy against triple-negative breast cancer	2018	Gene