KL UNIVERSITY: GUNTUR DEPARTMENT OF MATHEMATICS Pre Ph.D. Examinations Paper II: Timescale calculus

Eight questions are to be set and the student has to answer five in three hours of duration:

UNIT-1 **Basic definitions**: Jump operators, left and right dense, left and right scattered, Induction principle. Differentiation, Properties Leibnitz rule, examples and applications.

UNIT-2 **Integration**: Regulated function rd-continuous, Existence of pre-antiderivative and antiderivative, Mean value theorem, chain rule, Intermediate vale theorem and L'Hopitals rule.

Unit-3 : **First order linear equations:** Hilger's complex plane, the exponential function, examples of exponential functions, The regressive linear dynamic equations, initial value problems and variation of constants formula.

Unit-4 : **Second order linear equations**: Wronskians, Linear operator, Abel's theorem, Hyperbolic and Trigonometric functions, Method of factoring, reduction of order, Euler-Cauchy equations, variation of parameters formula.

Text Books: Dynamic equations on time scales, an introduction with Applications. Martin Bohner and Allan Peterson, BirKhauser, Boston.

KL UNIVERSITY: GUNTUR DEPARTMENT OF MATHEMATICS Pre-Ph.D Degree Examination MODEL PAPER

Paper II: Timescale calculus

Time: 3Hours

(ii)

Max.Marks:100

Answer any FIVE questions from following, each question carries equal marks.

- 1. Define ,classify and illustrate the following with examples:
 - a) Left and right dense,
 - b) Left and right scattered
 - c) Graininess function.
- 2. Assume that $f: T \to R$ is a function and let $f: T \in T^k$. Then prove the following:
 - (i) If f is differentiable at t, then f is continuous at t.
 - If f is continuous at t and t is right scattered, then fis differentiable at t with $f^{\Delta}(t) = \frac{f(\sigma(t)) f(t)}{\mu(t)}.$
 - (iii) If t is right-dense, then fis differentiable at t iff the limit $\lim_{s \to t} \frac{f(t) f(s)}{t s}$ exists as a finite number.
 - (iv) If f is differentiable at t, then $f(\sigma(t)) = f(t) + \mu(t) f^{\Delta}(t)$.
- 3. a) Find the first derivative t² on an arbitrary time scale.
 b) Define regulated and rd-continuous functions with examples.
- 4. Assume $g: \mathfrak{R} \to \mathfrak{R}$ is continuous and $g: T \to \mathfrak{R}$ is delta differentiable on T^k , and $f: \mathfrak{R} \to \mathfrak{R}$ is continuously differentiable. Then prove that there exists c in the interval $[t,\sigma(t)]$ with $(f \circ g)^{\Delta}(t) = f'(g(c))g^{\Delta}(t)$.
- 5. Suppose $y^{\Delta}(t) = p(t)y$ is regressive and $t_0 \in T$. Then prove that $e_p(t,t_0)$ is a solution of the initial value problem $y^{\Delta}(t) = p(t)y$, $y(t_0)=1$ on time scale T.
- 6. Apply the variation constants formula, solve the following initial value problems
 - (i) $y^{\Delta} = 2y + t$, y(0) = 0, where $T = \Re$
 - (ii) $y^{\Delta} = 2y + 3$, y(0) = 0, where T = Z
- 7. Solve the dynamic equation $y^{\Delta\Delta} (t+3)y^{\Delta} + 3ty = 0$ on the time scale T=N.
- 8. Determine the solution of Euler-Cauchy dynamic equation $t\sigma(t)y^{\Delta\Delta} 4ty^{\Delta} + 6y = 0$ on a general time scale $T \subset (0, \infty)$.

&&&&&