KL UNIVERSITY: GUNTUR DEPARTMENT OF MATHEMATICS
 Pre Ph.D. Examinations Paper II: Timescale calculus

Eight questions are to be set and the student has to answer five in three hours of duration:

UNIT-1 Basic definitions: Jump operators, left and right dense, left and right scattered, Induction principle. Differentiation, Properties Leibnitz rule, examples and applications.

UNIT-2 Integration: Regulated function rd-continuous, Existence of pre-antiderivative and antiderivative, Mean value theorem, chain rule, Intermediate vale theorem and L'Hopitals rule.

Unit-3 : First order linear equations: Hilger's complex plane, the exponential function, examples of exponential functions, The regressive linear dynamic equations, initial value problems and variation of constants formula..

Unit-4 : Second order linear equations: Wronskians, Linear operator, Abel's theorem, Hyperbolic and Trigonometric functions, Method of factoring, reduction of order, EulerCauchy equations, variation of parameters formula.

Text Books: Dynamic equations on time scales, an introduction with Applications. Martin Bohner and Allan Peterson, BirKhauser, Boston.

KL UNIVERSITY: GUNTUR DEPARTMENT OF MATHEMATICS

Pre-Ph.D Degree Examination
MODEL PAPER

Paper II: Timescale calculus

Time: 3Hours

Max.Marks:100

Answer any FIVE questions from following, each question carries equal marks.

1. Define ,classify and illustrate the following with examples:
a) Left and right dense,
b) Left and right scattered
c) Graininess function.
2. Assume that $f: T \rightarrow R$ is a function and let $f: T \in T^{k}$. Then prove the following:
(i) If f is differentiable at t , then f is continuous at t .
(ii) If f is continuous at t and t is right scattered, then fis differentiable at t with $f^{\Delta}(t)=\frac{f(\sigma(t))-f(t)}{\mu(t)}$.
(iii) If t is right-dense, then fis differentiable at t iff the limit $\lim _{s \rightarrow t} \frac{f(t)-f(s)}{t-s}$. exists as a finite number.
(iv) If f is differentiable at t , then $f(\sigma(t))=f(t)+\mu(t) f^{\Delta}(t)$.
3. a) Find the first derivative t^{2} on an arbitrary time scale.
b) Define regulated and rd-continuous functions with examples.
4. Assume $g: \mathfrak{R} \rightarrow \mathfrak{R}$ is continuous and $g: T \rightarrow \mathfrak{R}$ is delta differentiable on T^{k}, and $f: \mathfrak{R} \rightarrow \mathfrak{R}$ is continuously differentiable. Then prove that there exists c in the interval $[\mathrm{t}, \sigma(\mathrm{t})]$ with $(f \circ g)^{\Delta}(t)=f^{\prime}(g(c)) g^{\Delta}(t)$.
5. Suppose $y^{\Delta}(t)=p(t) y$ is regressive and $t_{0} \in T$. Then prove that $\mathrm{e}_{\mathrm{p}}\left(\mathrm{t}, \mathrm{t}_{0}\right)$ is a solution of the initial value problem $y^{\Delta}(t)=p(t) y, \mathrm{y}\left(\mathrm{t}_{0}\right)=1$ on time scale T .
6. Apply the variation constants formula, solve the following initial value problems
(i) $\quad y^{\Delta}=2 y+t, \quad y(0)=0, \quad$ where $T=\mathfrak{R}$
(ii) $\quad y^{\Delta}=2 y+3, \quad y(0)=0, \quad$ where $T=Z$
7. Solve the dynamic equation $y^{\Delta}-(t+3) y^{\Delta}+3 t y=0$ on the time scale $\mathrm{T}=\mathrm{N}$.
8. Determine the solution of Euler-Cauchy dynamic equation $t \sigma(t) y^{\Delta}-4 t y^{\Delta}+6 y=0$ on a general time scale $T \subset(0, \infty)$.
