Special Functions Syallabus

UNIT-I: The Gamma and Beta Functions

The Gamma function ,A series for $\Gamma^{\prime}(z) / \Gamma(z)$,Evaluation of $\Gamma^{\prime}(1)$, the Euler product for $\Gamma(z)$, the difference equation $\Gamma(z+1)=z \Gamma(z)$, evaluation of certain infinite products, Euler 's integral for $\Gamma(z)$, the Beta function, the value of $\Gamma(z) \Gamma(1-z)$, the factorial function, Legendre 's duplication formula, Gauss multiplication theorem, a summation formula due to Euler .

UNIT-II: BESSEL FUNCTIONS

Definition of $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$, Bessel's differential equation, Differential recurrence relation, A pure recurrence relation, A generating function, Bessel's integral, Index half an odd integral, modified Bessel function, orthogonality property for $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$.

UNIT-III: LEGENDRE'S POLYNOMIALS

Definition of $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$, Differential recurrence relations, the pure recurrence relation, Legendre's differential equation, the Rodrigue's formula, orthogonality property, special properties of $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$, more generating functions, Laplace's first Integral form, Expansion of x^{n}

UNIT-IV: HERMITE POLYNOMIALS

Definition of $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$,Recurrence relations, the Rodrigue's formula, other generating functions ,integrals, the Hermite polynomials as ${ }_{2} \mathrm{~F}_{0}$, orthogonality, expansion of polynomial s, more generating functions.

UNIT-V: LAGUERRE POLYNOMIALS

The Laguerre polynomial definition, generating functions, , recurrence relations, the Rodrigue's formula, the differential equation , orthogonality, expansion of polynomials, special properties ,other generating functions, the simple Laguerre polynomials.

TEXT BOOK:

(1) Special functions by E.D. Rainville, MacMillan company, New York, 1960.

Note: Answer ANY FIVE from the following.
1 (a) Find the relation between the beta and the gamma function.
(b) Evaluate $\int_{0}^{\pi / 2} \sqrt{\tan \theta} d \theta$.

2 (a) State and prove the Legendre's duplication formula.
(b) Evaluate $\int_{0}^{\infty} e^{-a x} x^{m-1} \sin b x d x$, by using gamma function.

3 (a) Prove the orthogonality property for the Bessel function.
(b) Show that $J_{n}^{\prime}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]$.

4 (a) State and prove the Rodrigue's formula for Legendre polynomials.
(b) Express the polynomial $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.

5 (a) State and prove the generating function for Hermite polynomials.
(b) Prove that $2 x H_{n}(x)=2 n H_{n-1}(x)+H_{n+1}(x)$.

6 (a) Show that $\int_{0}^{\infty} e^{-x} L_{m}(x) L_{n}(x) d x=0, m \neq n$.
(b) Evaluate $\int_{0}^{\infty} e^{-2 x}\left[L_{3}(2 x)\right]^{2} d x$.

7 (a) Using Rodrigue's formula, show that $P_{n}(x)$ satisfies the differential equation

$$
\frac{d}{d x}\left[(1+x)^{2} \frac{d}{d x}\left[P_{n}(x)\right]\right]+n(n+1) P_{n}(x)=0 .
$$

(b) Prove that $\int_{0}^{\infty} e^{-a x} J_{0}(b x) d x=\frac{1}{\sqrt{a^{2}+b^{2}}}$.

8 (a) Evaluate $\int_{-\infty}^{\infty} e^{-x^{2}}\left[H_{2}(x)\right]^{2} d x$.
(b) Prove that $L_{n}^{\prime}(x)=L_{n-1}^{\prime}(x)-L_{n-1}(x)$.

