Special Functions Syallabus

UNIT-I: The Gamma and Beta Functions

The Gamma function ,A series for $\Gamma'(z)/\Gamma(z)$,Evaluation of $\Gamma'(1)$, the Euler product for $\Gamma(z)$, the difference equation $\Gamma(z+1) = z\Gamma(z)$, evaluation of certain infinite products , Euler 's integral for $\Gamma(z)$, the Beta function , the value of $\Gamma(z)\Gamma(1-z)$, the factorial function , Legendre 's duplication formula , Gauss multiplication theorem , a summation formula due to Euler .

UNIT-II: BESSEL FUNCTIONS

Definition of $J_n(x)$, Bessel's differential equation, Differential recurrence relation, A pure recurrence relation, A generating function, Bessel's integral, Index half an odd integral, modified Bessel function, orthogonality property for $J_n(x)$.

UNIT-III: LEGENDRE'S POLYNOMIALS

Definition of $P_n(x)$, Differential recurrence relations, the pure recurrence relation, Legendre's differential equation, the Rodrigue's formula, orthogonality property, special properties of $P_n(x)$, more generating functions, Laplace's first Integral form, Expansion of x^n

UNIT-IV: HERMITE POLYNOMIALS

Definition of $H_n(x)$,Recurrence relations, the Rodrigue's formula ,other generating functions ,integrals, the Hermite polynomials as $_2F_0$, orthogonality, expansion of polynomials, more generating functions.

UNIT-V: LAGUERRE POLYNOMIALS

The Laguerre polynomial definition, generating functions, recurrence relations, the Rodrigue's formula, the differential equation, orthogonality, expansion of polynomials, special properties, other generating functions, the simple Laguerre polynomials.

TEXT BOOK:

(1) Special functions by E.D. Rainville, MacMillan company, New York, 1960.

Model Question Paper

Time:3 hours	Max Marks:100
Note: Answer <u>ANY FIVE</u> from the following.	
1 (a) Find the relation between the beta and the gamma function.	
(b) Evaluate $\int_0^{\pi/2} \sqrt{\tan \theta} d\theta$.	
2 (a) State and prove the Legendre's duplication formula.	
(b) Evaluate $\int_0^\infty e^{-ax} x^{m-1} \sin bx dx$, by using gamma fun	ction.
3 (a) Prove the orthogonality property for the Bessel function	
(b) Show that $J'_n(x) = \frac{1}{2}[J_{n-1}(x) - J_{n+1}(x)].$	
4 (a) State and prove the Rodrigue's formula for Legendre polynomials.	
(b) Express the polynomial $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomials.	
5 (a) State and prove the generating function for Hermite polynomials.	
(b) Prove that $2xH_n(x) = 2nH_{n-1}(x) + H_{n+1}(x)$.	
6 (a) Show that $\int_0^\infty e^{-x} L_m(x) L_n(x) dx = 0$, $m \neq n$.	
(b) Evaluate $\int_0^\infty e^{-2x} [L_3(2x)]^2 dx$.	
7 (a) Using Rodrigue's formula, show that $P_n(x)$ satisfies the differential equation	
$\frac{d}{dx}\left[(1+x)^2\frac{d}{dx}[\boldsymbol{P}_n(x)]\right] + n(n+1)\boldsymbol{P}_n(x) =$	0.
(b) Prove that $\int_0^\infty e^{-ax} J_0(bx) dx = \frac{1}{\sqrt{a^2 + b^2}}$.	
8 (a) Evaluate $\int_{-\infty}^{\infty} e^{-x^2} [H_2(x)]^2 dx$.	
(b) Prove that $L'_n(x) = L'_{n-1}(x) - L_{n-1}(x)$.	