KL UNIVERSITY: GUNTUR DEPARTMENT OF MATHEMATICS Pre Ph.D. Examinations Paper III: Dynamical systems on Time scales

Eight questions are to be set and the student has to answer five in three hours of duration:

UNIT-1 Self-Adjoint equations: Wronskian matrix, Lagrange Identity, Abel's formula, Hermitian, Riccati equation. Sturm's separation and Comparison theorems.

UNIT-2 Linear Systems and Higher order equations: Regressive matrices, Existence and Uniqueness theorem, matrix exponential function, Variation of constants, Liouville's Formula, Constant coefficients.

UNIT-3: Asymptotic behavior of solutions: Growth and dichotomy conditions, Levinson's perturbation Lemma properties and applications.

UNIT-4: Dynamic Inequalities: Grownwall's Inequality, Bernoulli’s Inequality, Holders and Minkowski's inequalities.Lyapunov inequalities.

Text Book: Dynamic equations on time scales, an introduction with Applications. Martin Bohner and Allan Peterson, BirKhauser, Boston.

KL UNIVERSITY: GUNTUR DEPARTMENT OF MATHEMATICS
 Pre-Ph.D Degree Examination
 MODEL QUESTION PAPER Paper III: Dynamical systems on Time scales

Time: 3 Hours
 Max.Marks:100
 Answer any FIVE questions from following, each question carries equal marks.

1. State and prove the comparison theorem for initial value problems.
2. Let $\mathrm{A} \in \mathfrak{R}$ be an nxn matrix valued function on T and suppose that $\mathrm{f}: T \rightarrow \mathfrak{R}^{n}$ is rdcontinuous. Let $\mathrm{t}_{0} \in T$ and $\mathrm{y}_{0} \in \mathfrak{R}^{\mathrm{n}}$. Then prove that the initial value problem $y^{\Delta}(t)=A(t) y+f(t), y\left(t_{0}\right)=y_{0}$ has a unique solution $\mathrm{y}: T \rightarrow \mathfrak{R}^{n}$.
3. Derive Gronwall's Inequality.
4. Assume $f \in C r d$ and $\mathrm{x}(\mathrm{t}, \mathrm{s})$ be the Cauchy function for $\mathrm{L}\left(\mathrm{x}(\mathrm{t})=\left(p x^{\Delta}\right)^{\Delta}(t)+q(t) x^{\sigma(t)}=0\right.$ for all $\mathrm{t} \in T$ then $\mathrm{x}(\mathrm{t})=\int_{a}^{t} x(t, s) f(s) \Delta s$ is the solution of the initial value problem $\mathrm{Lx}=\mathrm{f}(\mathrm{t}), \mathrm{x}(\mathrm{a})=0, x^{\Delta}(a)=0$.
5. Write the dynamic equation $x^{\Delta \Lambda}-5 x^{\Delta}+6 x=0$ on $T=\mathfrak{R i n}$ self adjoint form. Also express the difference equation $\mathrm{x}(\mathrm{t}+2)-5 \mathrm{x}(\mathrm{t}+1)+6 \mathrm{x}(\mathrm{t})=0$ on $\mathrm{T}=\mathrm{Z}$ in self adjoint form.
6. Let $\mathrm{A} \in \mathfrak{R}$ be a 2×2 matrix valued function and assume that X is a solution of $X^{\Delta}=A(t) X(t)$, then prove that X satisfies Liouville's formula.
7. State and prove Lyapunov inequality.
8. Solve the vector dynamic equation $x^{\Delta}=\left(\begin{array}{cc}3 & 1 \\ -13 & -3\end{array}\right) x$ for any time scale T.

$\boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&}$

