KL UNIVERSITY
 M.Phil / PRE-Ph.D EXAMINATION
 DEPARTMENT OF MATHEMATICS
 SYALLABUS
 PAPER-II: Distributions \& Estimation Theory

Unit 1 : DISTRIBUTIONS

Discrete And Continuous Distributions (Binomial,Poisson,Geometric,Hyper
Geometric ,Rectangular,Normal,Gamma Distributions and their Properties),Bi-Variate and Multivariate Normal Distributions, Exponential Family of Distributions

Unit 11: LIMIT THEOREMS

Modes of convergence, Weak law of large numbers, Strong law of large numbers. Limiting moment generating functions, Central limit theorem.

Unit 111: SAMPLE MOMENTS AND THEIR DISTRIBUTIONS

Random sampling, sample characteristics and their distributions- x^{2}, t and F distributions distribution of $\left(\bar{X}, S^{2}\right)$ in sampling from a normal population. Sampling from a Bi-variate normal distribution

Unit IV : THEORY OF POINT ESTIMATION

Problem of point estimation, Properties of estimates, Unbiased estimation, Lower bound for variance of estimate, Rao- Blackwell theorem, Method of moments, Maximum likelihood estimates, Bayes \& Minimax estimation, Minimal sufficient statistic

Unit V : CONFIDENCE INTERVAL ESTIMATION

Shortest length confidence intervals, Relation between confidence estimation and hypothesis testing, unbiased confidence intervals, Bayes confidence intervals

PRESCRIBED BOOK

An introduction to Probability theory and Mathematical Statistics-V.K. Rohatgi, Wiley Eastern Publications first edition-1975) [Chapters 5,6,7,8,11]

Additional Reading: Introduction to_Mathematical Statistics (Fourth edition) Robert Hogg \& Allen Craig

KL UNIVERSITY
 M.Phil / PRE-Ph.D EXAMINATION
 DEPARTMENT OF MATHEMATICS MODEL QUESTION PAPER PAPER-II - Distribution and Estimation Theory

Time: 3 Hours
Max.Marks: 100

Answer any FIVE questions.

All Questions carries equal marks.

1. a) Obtain the mean and variance of a truncated Binomial distribution truncated at $X=0$.
b) Derive the p.d.f. of Poisson distribution truncated at the origin and find its mean and variance.
2. a) Let X_{1}, X_{2} be independent random variable with $X i$ follows $b\left(n_{i}, \frac{1}{2}\right), i=1,2$. What is the PMF for $\mathrm{X}_{1}-\mathrm{X}_{2}+\mathrm{n}_{2}$?
b) Let X and Y be independent geometric $R V$ s. Show that $\min (X, Y)$ and X - Y are independent.
3. a) Let $X_{n} \xrightarrow{p} X$, and g be continuous function defined on R. Then $g\left(X_{n}\right) \xrightarrow{p} g(X)$ as $n \rightarrow \infty$.
b) State and prove Borel-Cantelli Lemma.
4. a) Let $\left(X_{1}, Y_{1}\right),\left(X_{1}, Y_{1}\right), \ldots,\left(X_{1}, Y_{1}\right)$ be a sample from a bi-variate population with variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ and covariance $\rho \sigma_{1} \sigma_{2}$. Then $E E S_{1}^{2}=\sigma_{1}^{2}, E S_{2}^{2}=\sigma_{2}^{2}$ and $E S_{11}=\sigma_{1} \sigma_{2}$
b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$. Compute the first four sample moments of \bar{X} about the origin and abut the mean Also compute the fit four sample moments of S^{2} about the mean.
5. a) Derive the characteristic function of a chi-square distribution. Establish its reproductive property.
b). Let X and Y be independent normal $R V$. A sample of $n=11$ observations on (X, Y) produces sample correlation coefficient $r=.40$.Find the probability of obtaining a value of R that exceeds the observed value.
6. a) Find the general form of the distribution of X such that a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the distribution as sufficient statistic.
b) State and prove Rao-Blackwell theorem. State Lehmann and Schaffe theorem. Explain its use.
7. a) Explain moments method of estimation. Under regularity t_{y} conditions to be stated by you, prove that M.L estimator is asymptotically efficient.
b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a sample from $\mathrm{G}(1, \theta)$. Find the shortest-length confidence interval for θ at level ($1-\alpha$), based on a sufficient statistic for θ.
8. a) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be i.i.d. with PDF $f_{\theta}(x)=\frac{\theta}{x^{2}}, x \geq \theta$, and $=0$ otherise. Find the shortest length (1- α)-level unbiased confidence interval for θ based on the pivot $\frac{\theta}{X_{(1)}}$.
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sample from $U(0, \theta)$. Show that the unbiased confidence interval for θ based on the pivot matrix $\frac{X_{i}}{\theta}$, coincides with the shortest length confidence interval based on the same pivot.
