KL UNIVERSITY M.Phil / PRE-Ph.D EXAMINATION DEPARTMENT OF MATHEMATICS SYALLABUS

PAPER-II: Distributions & Estimation Theory

Unit 1 : DISTRIBUTIONS

Discrete And Continuous Distributions (Binomial,Poisson,Geometric,Hyper Geometric ,Rectangular,Normal,Gamma Distributions and their Properties),Bi-Variate and Multivariate Normal Distributions, Exponential Family of Distributions

Unit 11: <u>LIMIT THEOREMS</u>

Modes of convergence, Weak law of large numbers, Strong law of large numbers. Limiting moment generating functions, Central limit theorem.

Unit 111: SAMPLE MOMENTS AND THEIR DISTRIBUTIONS

Random sampling, sample characteristics and their distributions- x^2 , t and F distributions distribution of (\bar{X}, S^2) in sampling from a normal population. Sampling from a Bi-variate normal distribution

Unit IV : <u>THEORY OF POINT ESTIMATION</u>

Problem of point estimation, Properties of estimates, Unbiased estimation, Lower bound for variance of estimate, Rao- Blackwell theorem, Method of moments, Maximum likelihood estimates, Bayes & Minimax estimation, Minimal sufficient statistic

Unit V : <u>CONFIDENCE INTERVAL</u> ESTIMATION

Shortest length confidence intervals, Relation between confidence estimation and hypothesis testing, unbiased confidence intervals, Bayes confidence intervals

PRESCRIBED BOOK

An introduction to Probability theory and Mathematical Statistics-V.K. Rohatgi, Wiley Eastern Publications first edition- 1975) [Chapters 5,6,7,8,11]

<u>Additional Reading</u>: Introduction to Mathematical Statistics (Fourth edition) Robert Hogg & Allen Craig

KL UNIVERSITY M.Phil / PRE-Ph.D EXAMINATION DEPARTMENT OF MATHEMATICS MODEL QUESTION PAPER PAPER-II - Distribution and Estimation Theory

Time: 3 Hours

Max.Marks: 100

Answer any FIVE questions.

All Questions carries equal marks.

- 1. a) Obtain the mean and variance of a truncated Binomial distribution truncated at X=0.
 - b) Derive the p.d.f. of Poisson distribution truncated at the origin and find its mean and variance.
- 2. a) Let X₁, X₂ be independent random variable with Xi follows $b(n_i, \frac{1}{2})$, i=1,2. What is the PMF for X₁- X₂+ n₂?
 - b) Let X and Y be independent geometric RVs. Show that min(X,Y) and X-Yare independent.
- 3. a) Let $X_n \xrightarrow{p} X$, and g be continuous function defined on R. Then $g(X_n) \xrightarrow{p} g(X)$ as $n \rightarrow \infty$. b) State and prove Borel-Cantelli Lemma.
- 4. a) Let (X₁, Y₁), (X₁, Y₁), ..., (X₁, Y₁) be a sample from a bi-variate population with variances σ₁², σ₂² and covariance ρσ₁σ₂. Then EES₁² = σ₁², ES₂² = σ₂² and ES₁₁ = σ₁σ₂
 b) Let X₁, X₂, ..., X_n be a random sample from N(μ, σ²). Compute the first four sample moments of X̄ about the origin and abut the mean Also compute the fit four sample moments of S² about the mean.
- 5. a) Derive the characteristic function of a chi-square distribution. Establish its reproductive property.
 - b). Let X and Y be independent normal RVs. A sample of n=11 observations on (X,Y) produces sample correlation coefficient r=.40.Find the probability of obtaining a value of R that exceeds the observed value.
- 6. a) Find the general form of the distribution of X such that a random sample X_1, X_2, \ldots, X_n from the distribution as sufficient statistic.
 - b) State and prove Rao-Blackwell theorem. State Lehmann and Schaffe theorem. Explain its use.
- 7. a) Explain moments method of estimation. Under regularity t_y conditions to be stated by you, prove that M.L estimator is asymptotically efficient.
 - b) Let X_1, X_2, \ldots, X_n be a sample from $G(1, \theta)$. Find the shortest-length confidence interval for θ at level (1- α), based on a sufficient statistic for θ .
- 8. a) Let X₁, X₂, ..., X_n be i.i.d. with PDF $f_{\theta}(x) = \frac{\theta}{x^2}$, $x \ge \theta$, and = 0 otherise. Find the shortest length (1- α)-level unbiased confidence interval for θ based on the pivot $\frac{\theta}{X_{(1)}}$.
 - b) Let X_1, X_2, \ldots, X_n be a sample from U(0, θ). Show that the unbiased confidence interval for
 - θ based on the pivot matrix $\frac{X_i}{\theta}$, coincides with the shortest length confidence interval based on the same pivot.