KL UNIVERISTY :: GUNTUR
 DEPARTMENT OF MATHEMATICS

Pre-Ph.D. Examinations

Paper III : APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS

Eight questions are to be set and the student has to answer five in three hours of duration UNIT-I : Linear difference equation: First order equations, general results for linear difference equations, solving linear difference equation.

UNIT-II : Method of solving linear difference equations: Solving linear difference equations with variable coefficients, non linear equations that can be linearized, solving difference equations using z - transforms.
(Scope and treatment as in Chapter -3 of Text book (1))
UNIT- III : Single species non- age-structured population models : Simple logistic models, logistic models with time-delay effects, stochastic models of populations growth.

UNIT- IV : Age- structured populations models : Discrete-Time Discrete-age-scale population models, continuous- time discrete- age scale population models, continuous- time continuous age scale population models.

UNIT- V : Two-Species population models : A simple Prey- Predator model, some other PreyPredator models, Prey- Predator models with time delays, models for competition.
(Scope and treatment as in Chapter -3 (UNIT-III), Sections 4.1 t 04.4 of Chapter - 4(UNITIV), Chapter -5 (UNIT-V) Text book (2))

Text Books:

1. Difference equations an introduction with applications by W.G.Kelly and A.C. Peterson, Second Edition, Harcourt Academic Press, USA, 2001.
2. Mathematical Models in Biology and Medicine by J.N.Kapur, Affiliated East- West press Private Limited, New Delhi, 1992.

K L UNIVERISTY :: GUNTUR DEPARTMENT OF MATHEMATICS
 Pre-Ph.D. Examinations
 MODELPAPER
 Paper III: APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS

Time : $\mathbf{3}$ hours
Max. Marks : 100
Answer any Five questions from following, each question carries equal marks.

1. (a) Solve the difference equation $\mathrm{y}(\mathrm{t}+1)-\mathrm{t} y(\mathrm{t})=(\mathrm{t}+1)!, \mathrm{t}=1,2,3, \ldots$ so that $\mathrm{y}(1)=5$.
(b) Solve the equation $\quad u(t+1)=a \frac{\left(t-r_{1}\right)\left(t-r_{2}\right) \ldots\left(t-r_{n}\right)}{\left(t-s_{1}\right)\left(t-s_{2}\right) \ldots\left(t-s_{m}\right)} u(t)$,
where $a, r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{m}$ are constants.
2. (a) Let $u_{1}(t), u_{2}(t) \ldots, u_{n}(t)$ be the solution of

$$
p_{n}(t) u(t+n)+p_{n-1}(t) u(t+n-1)+\ldots+p_{0} u(t)=0
$$

and let $\mathrm{w}(\mathrm{t})$ be the corresponding Casoratian.
Then show that $w(t+1)=(-1)^{n} \frac{p_{0}(t)}{p_{n}(t)} w(t)$.
(b) Find all solutions of $u(t+3)-7 u(t+2)+16 u(t+1)-12 u(t)=0$.
3. (a) Solve the difference equation $\Delta y(t)=3^{t} \sin \frac{\pi}{2} t$.
(b) Solve the equation $u(t+2)-u(t+1)-\frac{1}{t+1} u(t)=0$.
4. (a) Solve the difference equation $y(t+2) y(t)=y(t+1)$.
(b) Solve the following initial value problem using z-transform

$$
(k+1) y(k+1)-(50-k) y(k)=0, y(0)=1 .
$$

5. (a). Discuss about logistic equation.
(b).Discuss about logistic models with Time-Delay effects.
6. (a). Discuss about the stable age structure.
(b). Discuss about Linear continuous-time model.
7. Write the basic equations for a simple continuous prey-predator model and the stability nature of the model around the equilibrium points.
8. Discuss the threshold results the model for competition interaction between two species.
