KL UNIVERSITY
 Pre-Ph.D. Examination BOUNDARY VALUE PROBLEMS
 Syllabs

UNIT-1 : System of linear differential equations: system of first order equations, existence and uniqueness theorem, fundamental matrix, non-homogeneous linear systems, linear systems with constant coefficients.

Unit-2 : Existence and Uniqueness of Solutions: introduction, preliminaries, successive approximations, Picard's theorem, continuation and dependence on initial condition, existence of solutions in the large interval.
(Scope and treatment as in chapters: 4 and 5 of Text book (1))
Unit-3: Nonlinear boundary value problems: Kinds of boundary value problems associated with Non-linear second order differential equations, generalized Lipschitz condition, failure of existence and uniqueness of linear boundary value problems, simple nonlinear BVP, standard results concerning initial value problems.

Unit-4: Relation between the first and second boundary value problems: relation between uniqueness intervals, relation between existence intervals.

Unit-5: Contraction mapping: introduction, Contraction mappings, boundary value problems, a more generalized Lipschitz condition.
(Scope and treatment as in chapters: 1, 2 and sections 3.1 to 3.4 of chapter 3 of Text book (2))

Text Books:

1. Text book of ordinary differential equations by S. G. Deo, V. Lakshmikantham and V. Raghavendra, Second edition, Tata McGraw-Hill Publishing Company Ltd, New Delhi (2002).
2. Non-linear two point boundary value problem by P. B. Bailey, L. P. Shampine and P. E. Waltman, Academic press, New York and London (1968).

KL UNIVERSITY

Pre-Ph.D. Examination BOUNDARY VALUE PROBLEMS
 MODEL QESTION PAPER

Time: 3Hours
Max.Marks:100

Answer any FIVE questions from following, each question carries equal marks.

1. (a) Find the fundamental system of solutions for the system of equations

$$
\left.x_{1}^{\prime}(\mathrm{t})=x_{1}(t), \quad x_{2}^{\prime}(t)=2 x_{2}(t), \text { for all } t \quad, 1\right] .
$$

(b) Compute the solution of the following non-homogeneous system $x^{\prime}=A x+b(t)$, where

$$
A=\left[\begin{array}{ll}
3 & 2 \\
0 & 3
\end{array}\right], b(t)=\left[\begin{array}{c}
e^{t} \\
e^{-t}
\end{array}\right] \text { and } x(0)=\left|\begin{array}{l}
1 \\
1
\end{array}\right|
$$

2. (a) Determine $\exp (A t)$ for the system $x^{\prime}=A x$, where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

(b) Prove that if $\mathrm{x}(\mathrm{t})$ is the solution of the initial value problem $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$ on some interval if and only if $\mathrm{x}(\mathrm{t})$ is solution of the corresponding integral equation.
3. (a) If $f(t, x)$ is continuous function on $|t| \leq \infty,|x|<\infty$ and satisfies Lipschitz condition on the strip S_{a} for all $\mathrm{a}>0$, where $\mathrm{Sa}=\{(\mathrm{t}, \mathrm{x}):|\mathrm{t}| \leq \mathrm{a},|\mathrm{x}|<\infty\}$. Then show that the initial value problem $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$ has a unique solution existing for all t .
(b) State and prove Picard's theorem.
4. Define the kinds of boundary value problems and discuss the solution of nonlinear boundary value problem $y^{\prime \prime}(t)+|y(t)|=0$, satisfying $y(0)=0, y(b)=B$.
5. (a) Let $\mathrm{a}<\mathrm{c}<\mathrm{b}$. If uniqueness hold for all second boundary value problems $y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0, y(a)=A, y^{\prime}\left(c_{1}\right)=m$, whenever $c_{1} \in[a, c]$ and if uniqueness hold for all second boundary value problems $y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0$, $y^{\prime}\left(c_{1}\right)=m, y(b)=B$, whenever $c_{1} \in[c, b]$, then show that uniqueness holds for all first boundary value problems $y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0, y(a)=A, y(b)=B$.
(b) Obtain the Green's function for second order equation $y^{\prime \prime}(t)+F\left(t, y(t), y^{\prime}(t)\right)=0$, satisfying the zero boundary conditions $y(a)=0, y(b)=0$, And also find bounds for Green's function.
6. (a) Let $f(t, y)$ be continuous on $[a, b] \times(-\infty, \infty)$ and satisfies $\left|f(t, x)^{-} f(t, y)\right| \leq K\left|x^{-} y\right|$, then show that first boundary value problem $y^{\prime \prime}+f(t, y)=0, y(a)=A, y(b)=B$ has
unique solution whenever $\frac{K(b-a)^{2}}{\pi^{2}}<1$.
(b) Discuss the failure of existence and uniqueness of the linear boundary value problem

$$
y^{\prime \prime}(t)+y^{\prime}(t)=0, \quad y(0)=0, \quad y(b)=B .
$$

7. (a) Obtain the existence and unique solution of first boundary value problem

$$
y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0, y(a)=A, y(b)=B
$$

by matching the solutions of two initial value problems, provided $f\left(t, y, y^{\prime}\right)$ is continuous and satisfies Lipschitz condition.
(b) Let $f\left(t, y, y^{\prime}\right)$ be continuous on $[a, b] \times(-\infty, \infty) \times(-\infty, \infty)$ and satisfies

$$
\left|f\left(t, y, y^{\prime}\right)-f\left(t, x, x^{\prime}\right)\right| \leq K|y-x|+L\left|y^{\prime}-x^{\prime}\right| .
$$

Then show that the boundary value problem $y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0$, $y(a)=A, y(b)=B$ has one and only one solution provided

$$
\frac{K\left(b-a^{2}\right)}{8}+\frac{L(b-a)}{2}<1 .
$$

8. (a) Define generalize Lipschitz condition.
(b) Suppose $f\left(t, y, y^{\prime}\right)$ be continuous on $[a, b] \times(-\infty, \infty) \times(-\infty, \infty)$ and satisfies

$$
\left|f\left(t, y, y^{\prime}\right)-f\left(t, x, x^{\prime}\right)\right| \leq p(t)|y-x|+q(t)\left|y^{\prime}-x^{\prime}\right| .
$$

If the equation $u^{\prime \prime}(t)+q(t) u^{\prime}(t)+p(t) u(t)=0$ has a solution satisfying $u(t)=0$, $u^{\prime}(t)=m$ on $[\mathrm{a}, \mathrm{b}]$. Then show that the second boundary value problem $y^{\prime \prime}(t)+f\left(t, y(t), y^{\prime}(t)\right)=0, y(a)=A, y^{\prime}(b)=m$ has one and only one solution

