KL University Department of Electronics & Computer Engineering M.Tech (wcsn) First Semester 2015-2017

Course Code	: 15-EM5109
Course Title	: Computational Methods and Error Analysis
Course Structure	: 3-2-0
Credits	: 4
SYLLABUS:	

Unit I: Error Analysis: Errors in Numerical calculations, Solution of algebraic and transcendental equations: Bisection Method, Iteration method, Newton-Raphson method, Secant method, Muller method.

Interpolation: Newton's forward and Newton's backward interpolation formulas, Cubic spline interpolation; Lagrange's interpolation and Newton's divided difference interpolation for unequal intervals.

Unit II: Curve fitting: Fitting of straight line, parabola, power curve, exponential curve using method of least squares and method of weighted least squares; Method of least squares for continuous functions; Grams-Schmidth process.

Unit III: Numerical differentiation and Numerical Integration: Errors in numerical differentiation, Newton's forward and backward formulas; cubic spline method, maxima and minima of tabulated functions.

Numerical integration: Simpson's formulae, Weddle's rule, Boole's rule, cubic splines, Romberg integration.

Unit IV: Matrices and Linear system of equations: Formation of system of linear equations, Gauss elimination methods, Gauss-Jacobi iterative method, Gauss-Seidal iterative method, Power method to find eigen values.

Numerical solution of Ordinary differential equations: Euler's method, modified Euler's method, 4th order Runge-Kutta method, and Runge-kutta method for simultaneous first order ordinary differential equations.

Unit V: Finite difference method: Solution of BVP by finite differences, Classification of Partial differential equations, solution of PDE by finite differences: Laplace and Poisson equation by Gauss-Seidal method.

Text Books:

1. Introductory Methods to Numerical Analysis by S.S. Sastry, 4th edn., PHI.

2. Numerical Methods for Scientific and Engineering computations by M.K. Jain, S.R.K. Iyengar,

and R.K. Jain, 4th edn., New Age publishers.

Reference Books:

1. Higher Engineering Mathematics by B.S. Grewal, 40rd edn, Khanna publishers.

2. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edn, Wiley publishers. dory