K L University Department of Electronics & Computer Engineering M.Tech (Embedded Systems)

Course No. : 15-EM5102

Course Title : REAL TIME CONCEPTS FOR EMBEDDED SYSTEMS

Course Structure : 3-2-0 Credits : 4

SYLLABUS

UNIT I Introduction: Examples of Embedded Systems, Definition of Embedded Systems, Architecture of Embedded Systems, Real- Time Embedded Systems, Design Issues and Current Trends for Embedded Systems

Hard versus soft Real- Time Systems: Jobs and Processes, Release Times, Deadlines and Timing Constraints, Hard and Soft Timing Constraints, Hard Real Time Systems, Soft Real Time Systems

UNIT II A Reference Model of Real – Time Systems: Processors and Resources, Temporal Parameters of Real Time Workload, Periodic Task Model, Precedence Constraints and Data Dependency, Functional Parameters- preemptivity of jobs, criticality of jobs, Resource Parameters of Jobs and Parameters of Resources, Scheduling Hierarchy- Scheduler and Schedules, Feasibility, Optimality and Performance Measures.

Classification of Real Time Scheduling Approaches: Clock- Driven Approach, Weighted Round- Robin Approach, Priority- Driven Approach, Dynamic versus Static Systems, Effective Release Times and Deadlines, optimality of the EDF and LST algorithms, Non optimality of the EDF and LST algorithms, Challenges in validating timing constraints in priority –driven systems Off-line versus On-line Scheduling UNIT III: Clock-Driven Scheduling: Notations and Assumptions, Static, Timer -Driven Scheduler, General Structure of Cyclic Schedules, Cyclic Executives, Improving the Average Response Time of Aperiodic Jobs, Scheduling Sporadic Jobs-Acceptance test ,EDF Scheduling of accepted jobs and implementation, Pros and Cons of Clock Driven Scheduling,

UNIT IV: Priority-Driven Scheduling of Periodic Tasks: Static Assumption, Fixed Priority v/s Dynamic Priority Algorithms, schedulability test for the EDF algorithm, a schedulability test for fixed priority tasks with short response times-time demand analysis, schedulability test for fixed priority tasks with arbitrary response times: busy intervals, general schedulability test, sufficient schedulability conditions for RM & DM algorithms: schedulable utilization of the RM algorithm for tasks with Di=pi, schedulable utilization of fixed priority tasks with arbitrary relative deadlines

Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems: Assumptions and Approaches, Deferrable Servers- Operations of Deferrable Servers, Constant utilization server Scheduling of sporadic jobs-a simple acceptance test in deadline driven systems, a simple acceptance test in fixed- priority driven systems

UNIT V: Resources and Resource Access control: Assumptions on Resources and Their Usage, Effects of Resource Contention and Resource Access Control, Non-preemptive Critical Sections, Basic Priority Inheritance Protocol, Basic Priority Ceiling Protocol- Definition, computation of blocking time, controlling accesses to Multiple Unit Resources

Real-Time Operating Systems: Overview- Threads and Tasks, The Kernel, Time Services and Scheduling Mechanisms- Time Services, Scheduling Mechanisms, Other Basic Operating System Functions-Communication and Synchronization, Event Notification and Software Interrupt, Memory Management, I/O and Networking

TEXT BOOKS:

- 1. Real Time Systems By Jane W.S.Liu -Low Price Edition , Pearson Education Asia
- 2. Real-Time Concepts for Embedded Systems Qing Li with Caroline Yao published by CMP Books.