## K L UNIVERSITY <br> STRENGTH OF MATERIALS (11 - CE 204)

## SYLLABUS

| $\mathbf{L}$ | $\mathbf{T}$ | $\mathbf{P}$ | $\mathbf{C r}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ |

Introduction of theory of elasticity: ; Elastic material properties; Stress equation of equilibrium, Strain displacement relations, Compatibility equations, Stress Strain Relations, Hooke's law and tension test, Solution of elasticity equations-stress function approach, Von mises stresses
Energy methods: Euler's Lagrange's equations; Virtual Work, Shape functions for displacement and solution by energy methods,
Beams: Beam theories, Classical \& Finite element methods of one dimensional structures; axial, Torsional and bending elements and stiffness matrices;
Shearing Forces and Bending Moments: Shear force and bending moment, relationship between load, shear force and bending moment, Shear force and bending moment diagrams.

Stresses in Beams: Introduction, Normal strains in beams, normal stresses in beams, cross section shapes of beams, shear stresses in rectangular beams, shear stresses in the webs of beams with flanges.
Deflection of beams: Introduction, Deferential equations of the deflection curve, deflections by integration of the bending moment equation, Moment area method, Macaulay's Method.

Columns: Buckling and Stability, Columns with Pinned ends, Columns with other support conditions, Limitations of Euler's Formula, Rankine's Formula, Columns with eccentric Axial Loads, Secant formula.
Thin pressure vessels: Concepts of hoop and longitudinal stresses, Analysis of cylinders and shells.
Thermal Stress: Thermal stresses and strains
Computer aided stress analysis with cases dealt in the class and visualize the stress and strain distribution in the structures

## Text Books:

1. Theory of Elasticity - Timoshenko \& Goodier
2. Mechanics of Materials - Gere and S.P.Timoshenko

## Reference Books:

1. Introduction to Finite Element method - Chandrupatla \& Belagundu
2. Theory of Elasticity - Dym \& Shames
3. Engineering Mechanics of Solids - E . P. Popov,
